• Title/Summary/Keyword: pollutant removal

Search Result 367, Processing Time 0.03 seconds

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.

Development and experimental verification of vortex typed nonfilter nonpoint source pollution reduction device (와류형 미필터 비점오염저감장치의 개발과 실험적 검증)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Lee, Hae-Kwang;Hwang, Sung-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.265-277
    • /
    • 2019
  • The objective of this study was to develop and verify an effective vortex typed nonfilter nonpoint source pollution reduction device. To verify this pollution reduction device, a total of twelves scenarios (three rainfall intensities${\times}$two states${\times}$two steps) of experiments were conducted using pollutants. First, simulated inflow (rainfall intensity 2.5 mm/hr: $0.00152m^3/s$, rainfall intensity 3.395 mm/hr: $0.00206m^3/s$, rainfall intensity 6.870 mm/hr: $0.00326m^3/s$) was calculated. Second, pollutants (mixture of 25% of four particle sizes) were selected and injected. Third, pollutant removal efficiencies of this device at its initial state and operating states were measured. As a result of analysis based on rainfall intensity, the concentration of pollutants was decreased by the device at initial and operating states at all rainfall intensities. Its pollutant removal efficiency was more than 80%, the standard set by the Ministry of Environment. Its pollutant removal efficiency was gradually increased over time, reaching approximately 90%. Its pollutant removal efficiency was higher in its operating state than that in its initial state. Therefore, nonpoint source pollutants can be effectively removed by this vortex typed nonpoint source pollution reduction device developed in this study.

Application of High-temperature 3-phase Equilibrium Distribution to Dry Scrubber for the Simultaneous Removal of $SO_2$ and Vinyl Chloride (건식세정기에서의 오염물 동시제거를 위한 고온3계평형 모델의 적용과 예비설계에의 응용)

  • 구자공;백경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1990
  • Simultaneous removal efficiencies of hydrophilic and hydrophobic gaseous pollutants are experimentally determined, and the macroscopic removal mechanism of pollutants in a dry scrubber is analyzed using the extended model of three phase equilibrium distribution of pollutant at high temperatures that can describe the different morphological conditions of adsorbent and water at varying relative humidities. For the simplicity, the inside of spray dryer is divided into three regions of ; (1) absorption, (2) three-phase equilibrium, and (3) adsorption, and the removal efficiencies of each pollutants at three regions are observed at different experimental conditions to estimate the effects of important parameters of dry scrubber. The laboratory experiments simulate the three regions of spray dryer with the temperature control and thus evaporation rate of water from the slurry particle. $SO_2$ as a hydrophilic gaseous pollutant and vinyl chloride as a hydrophobic toxic gas are selected for the future field application to soid waste incineration, and the two types of slurry are made of the two sorbents ; 10 wt.% $Ca(OH)_2$, and 10 wt.% NaOH. Result of temperature effect shows the height of absorption plus three-phase region is decreased as the operation temperature is increased, which results in the lower removal efficiency of $SO_2$ but higher removal for vinyl chloride in the adsorption region of dry scrubber. The removal efficiency of $SO_2$ is higher by NaOH slurry than by $Ca(OH)_2$ slurry due to the hygroscopic nature of NaOH, while the removal of vinyl chloride is higher in $Ca(OH)_2$ case. From the analysis of redults using three-phase equilibrium distribution model, the effective two-phase partition coefficients can be obtained, and the possible extention in the application of the three-phase equilibrium model in a dry scrubber design has been demonstrated.

  • PDF

Acclimation of magnetic activated sludge with 1,4-dioxane and analysis of bacterial flora in the sludge

  • Toshiyuki Nikata;Hayato Ogihara;Yasuzo Sakai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2023
  • Isolation of pollutant-degrading bacteria is important in bioaugmentation, one of the methods for biological degradation of environmental contaminants. We focused on the magnetic activated sludge (MAS) process as a culture method that efficiently concentrates degrading bacteria, and cultured activated sludge with 1,4-dioxane as a model pollutant. After 860 days of operation, MLVSS, which indicates the amount of sludge, increased from 390 mg/L to 10,000 mg/L, and the removal rate of organic matter including 1,4-dioxane, tetrahydrofuran, and glucose in the artificial wastewater reached up to 97%. Based on these results, the MAS process was successfully used to acclimate activated sludge with 1,4-dioxane. Bacterial flora analysis in the MAS showed that bacteria of the genus Pseudonocardia, already reported as 1,4-dioxane degrading bacteria, play an important role in the degradation of this pollutant. The MAS process is a suitable culture method for acclimation of environmental pollutants, and the findings indicate that it can be used as an enrichment unit for pollutant-degrading bacteria.

Calculation of Pollutant Load for Prediction of Pollutant Loads to Watershed (합리적인 유역단위 오염부하량 산정방법 연구)

  • Jang, Jae-Ho;Yoon, Chun-Gyung;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.534-539
    • /
    • 2005
  • The purpose of this study is the introduction of pollutant loads's estimation into Saemangeum watershed area with M.E.'s guidebook for TMDL and GIS tool. To estimate reliable pollutants loads, it is necessary to think about characteristic of removal, discharge and runoff as time series. In this study, it was calculated for generation loads which be came from pollutant source, discharge loads which be reduced in the treatment facilities and delivery loads which be considered the self purification parameter and delivery distance. To assess the delivery distance handily, it was particularly estimated using Arc-GIS. It was met with good results that delivery loads of BOD, T-N and T-P was reflected to seasonal precipitation. Lastly to verify the estimated pollutant loads, HSPF developed by USEPA was applied to it. It was showed a relativity of observed to simulated data for flow, Temperature, DO, BOD, $NO_3^--N$ TN and TP. Consequantly, this delivery loads can make full use of model input data for prediction of pollutant loads.

  • PDF

Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model (BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용)

  • Kim, Min Joo;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Development of tree box filter LID system for treating road runoff (LID 시설로서 도로에 적용 가능한 수목여과시설 개발)

  • Choi, Jiyeon;Son, Younggyu;Lee, Soyoung;Lee, Yuhwa;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.407-412
    • /
    • 2013
  • The aim of this study was to develop a tree box filter system, an example of Low Impact Development technology, for treating stormwater runoff from road. Monitoring of storm events was performed between June 2011 and November 2012 to evaluate the system performance during wet day. Based on the results, all runoff volume generated by rainfall less than 2 mm was stored in the system. The minimum volume reduction of 20% was observed in the system for rainfall greater than 20 mm. The greatest removal efficiency was exhibited by the system for total heavy metals ranging from 70 to 73% while satisfactory removal efficiency was exhibited by the system for particulate matters, organic matters and nutrients ranging from 60 to 68%. The system showed greater pollutant removal efficiency of 67 to 83% for rainfall less than 10 mm compared to rainfall greater than 10 mm which has 39 to 75% pollutant removal efficiency. The system exhibited less pollutant reduction for rainfall greater than 10 mm due to the decreased retention capacity of the system for increased rainfall. Overall, the system has proved to be an option for stormwater management that can be recommended for on-site application. Similar system may be designed based on several factors such as rainfall depth, facility size and pollutant removal efficiency.

Case Study on the Improvement of Pollutant Removal Efficiency in Sihwa Constructed Wetland (시화호 인공습지의 수질정화기능 향상을 위한 사례연구)

  • Choi, Don-Hyeok;Kang, Ho;Choi, Kwang-Soon
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Three plans(induction of water flow, supply of oxygen into water, control of fish causing resuspension of solids) proposed to improve the pollutant removal efficiency of Sihwa Constructed Wetland(CW) were estimated by considering the their efficiency and application to the wetland. After construction of facility for induction of water flow in lower part(W 122m${\times}$L 103m) of the wetland, the mean removal efficiencies of BOD, SS, TN and TP were in range of 12.8~37.4% and BOD was showing the highest efficiency. This result indicates that water flows is one of very important factors in the pollutant removal of wetland, especially near the outlet of a large scale wetland such as Sihwa CW. Dissolved oxygen(DO) concentrations after operation of two oxygen supply systems such as Air Bubble Diffuser and Surface Aeration System increased 15.5% and 27.2%, respectively. For maintaining effective DO concentration in Sihwa CW, the operation of oxygen supply system may be desirable during midnight to dawn in the location in which DO concentration is not enough, for instance less than 2 mg/L in CW. In experiments of the fish removal from Sihwa CW, the mean turbidity was lower in test site(6.2 NTU) than control site(10.6). The removal efficiency of thurbidity by th fish removal from the wetland was 41.5%. Therefore, a relevant fish management through a periodical monitoring of fish and turbidity is needed.

Discharge and Ozone Generation Characteristics of a Wire-Plate Discharge System with a Slit Barrier (슬릿 유전체 장벽을 갖는 선대 평판형 방전장치의 방전 및 오존 발생특성)

  • Moon Jae-Duk;Jung Jae-Seung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.421-426
    • /
    • 2005
  • A wire-plate discharge system with a slit barrier has been proposed and investigated experimentally by focusing on the discharges on the slit barrier and ozone generation characteristics. This wire-plate discharge system with a slit barrier can generate an intensive corona discharges, and produce corona discharge twice, once from the corona wire electrode and second time from the surface and the slits of the slit dielectric barrier. As a result this propose wire-plate discharge system with the slit barrier can produce greatly increased ozone than without the slit barrier. This type of wire-plate discharge system with the slit barrier could be used for effective ozone generation as a means with retard to the removal of pollutant gas