• Title/Summary/Keyword: pollutant removal

Search Result 369, Processing Time 0.03 seconds

Solid Separation and Flotation Characteristics of Livestock Wastewater Using DAF Process (DAF 공정을 이용한 축산폐수의 고형물 분리와 부상특성)

  • Kang, Byong-Jun;Yoo, Seung-Joon;Lee, Se-il;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 2008
  • The series of experiments under the various conditions were carried out to evaluate the feasibility of dissolved air flotation (DAF) as an alternative of conventional gravity sedimentation (CGS) and to investigate the decrease of the loadings following to biological wastewater treatment processes in livestock wastewater system. On the basis of the experiment result between CGS and DAF processes, for the other water quality criteria as well as suspended solid the removal efficiency of DAF process was about 20~25 % better than CGS process on average. In addition, the particle removal efficiency of DAF process became higher in proportion as the increase of air to solid (A/S) ratio and the general wastewater treatment efficiency of DAF process was enough to meet the requirement of loading decrease to following biological process even at low A/S ratio range. Though DAF process is widely known as an solid separation unit, there was not the notable relationship between particle separation efficiency and several pollutant removal efficiencies like $COD_{Cr}$ and nutrients (T-N, T-P). Assume that the $COD_{Cr}$ was removed as the fraction of particle separation in this experiment, the removal efficiency of T-N and T-P were sensitive to removal efficiency of $COD_{Cr}$, especially.

A Study on Low Concentrations of Organic Pollutants Removal using TiO2 (TiO2를 이용한 저농도 유기오염물질 제거에 관한 연구)

  • Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Microbiological treatment, chlorination, and ozonation are usually used for water treatment. However, there is weakness that these methods can't decompose and eliminate recalcitrant organic pollutants perfectly. It is possible to eliminate recalcitrant organic pollutants when photocatalysis of $TiO_2$ is used. In this study, the removal efficiencies of organic pollutants by using photocatalyst of $TiO_2$ in the slightly polluted golf club water hazard and a river were investigated. The amount of $TiO_2$ was divided into three categories of 1 g/L, 2 g/L and 4 g/L in order to investigate the adequate amount of $TiO_2$ and the removal efficiency. UV light was used as a light source for the reaction of photocatalyst. As a conclusion in this study, the efficiency of turbidity removal was increased in proportion to the amount of $TiO_2$ until 4 hours. After then the turbidity was gradually decreased. Finally, the optimum concentration of $TiO_2$ was 4 g/L. The efficiency of COD removal was increased in proportion to the amount of $TiO_2$ regardless of time.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

Reactive Black Removal by using Electrocoagulation Techniques: An Response Surface Methodology Optimization and Genetic Algorithm Modelling Approach

  • Manikandan S.;Saraswathi R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.174-183
    • /
    • 2023
  • The dye wastewater discharge from the textile industries mainly affects the aquatic environment. Hence, the treatment of this wastewater is essential for a pollutant-free environment. The purpose of this research is to optimize the dye removal efficiency for process influencing independent variables such as pH, electrolysis time (ET), and current density (CD) by using Box-Behnken design (BBD) optimization and Genetic Algorithm (GA) modelling. The electrocoagulation treatment technique was used to treat the synthetically prepared Reactive Black dye solution under batch mode potentiometric operations. The percentage of error for the BBD optimization was significantly greater than for the GA modelling results. The optimum factors determined by GA modelling were CD-59.11 mA/cm2, ET-24.17 minutes, and pH-8.4. At this moment, the experimental and predicted dye removal efficiencies were found to be 96.25% and 98.26%, respectively. The most and least predominant factors found by the beta coefficient were ET and pH respectively. The outcome of this research shows GA modeling is a better tool for predicting dye removal efficiencies as well as process influencing factors.

Evaluation of the Impacts of Water Quality Management in Kyongan Stream Watershed using SWAT Model (SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.387-398
    • /
    • 2010
  • SWAT model would be applied to evaluate the pollutant removal capacity with various best management practices (BMPs) in Kyongan stream watershed which plays an important role in water quality conservation and improvement of Paldang reservoir. The methods for the representation of various BMPs scenarios with SWAT is developed and evaluated. Riparian buffer strip, agricultural conservation practices to reduce fertilizer, sediment, and nutrients occurring from farm field (Grassed swale, Contour farming/Parallel terrace, Field border, Farm retention pond, Grade stabilization structure), and washland such as wetland and pond to extend detention and improve water quality are represented in SWAT. And to represent the expansion of existing Waste Water Treatment Plants (WWTPs) in Soil and Water Assessment Tool (SWAT), reduction effect for point source pollutants was simulated. As the result of simulation, the removal rates of SS, TN, TP from scenarios of Kyongan stream watershed are the average annual SS yield by 5.2% to 69.2%, the average annual TN yield by 0.5% to 26.3%, and the average annual TP yield by 1.3% to 32.5%, respectively. This study has demonstrated that the SWAT is a very reliable and useful water quality and quantity assessment tool, and the BMPs representation in SWAT for watershed management is able to effectively simulate in Kyongan Stream watershed.

Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst

  • Jung, Min-Jung;Jeong, Eui-Gyung;Jang, Jeen-Seok;Lee, Young-Seak
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • In this study, $TiO_2$-Activated carbon (AC) complex fibers were prepared by electrospinning for the synergetic effect of adsorption and degradation of organic pollutant. The average diameter of these fibers increased with increasing the amount of AC added, except for 1AC-TOF (AC$/TiO_2$ =1/40 mass ratio). After calcinations at $500^{\circ}C$, long as-spun fibers were broken and their average diameter was slightly decreased. The resultant fibers after calcination had rough surface and sphere shapes like a peanut. From XRD results, it was confirmed that as-spun fibers were changed to anatase $Ti_O2$ fiber after calcinations at $500^{\circ}C$. The prepared $TiO_2$-AC complex fibers could remove procian blue dyes by solar light irradiation with high removal property of 94~99%. The PB dye was rapidly removed by adsorption during the initial 5 minutes. But after 5 minutes, dye removal was occurred by photodegradation. In this study, the most efficient AC/$TiO_2$ ratio of $TiO_2$-AC complex fibers was 5/40, showing the synergetic effect of adsorption and photodegradation. It is expected that the $TiO_2$-AC complex fibers can be used to remove of organic pollutants in water system.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM (EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석)

  • Cho, SeonJu;Kang, MinJi;Kwon, Hyeok;Lee, JaeWoon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

Application of Membranes for Organic Liquid or Vapor Separation and Design of Plasma-Graft Filling-Polymerized Membranes

  • Yamaguchi, Takeo;Nakao, Shin-ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.34-39
    • /
    • 1996
  • There is much recent interests in applying membrane separation technologies, especially for organic liquid and vapor separation or removing dissolved organics from water. Pervaporation separation can separate azeotropic mixtures and mixtures close to boiling point, and it has a potential for energy saving process instead of distillation. Removal of chlorinated oraganics from water is other measure application for pervaporation separation. Contaminated pollutant must be removed from water, and a pervaporation can effectively remove the pollutant. Air pollution by organic vapor recently became serious enviromncntal problem, and removing organic vapor from air is important application of the membrane technology.

  • PDF

Effect of Biofilter Operation Parameters on Dimethyl Disulfide Removal : Loading, Time, and Concentration

  • Arpacioglu, Bora C.;Kim, Jo-Chun;Allen, Eric R.;Kim, Seoung-Hyun
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.783-791
    • /
    • 2002
  • A laboratory-scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide(DMDS). The biofiltration of DMDS was found to depend on the pollutant loadings rather than the inlet concentrations. It was estimated that the pollutant was only inhibitory to the operation of the biofilters at DMDS concentrations greater than 5500 ppmv A residence time of 30 seconds(120 m$^3$/m$^2$/h volumetric loading) was determined as appropriate for efficient operation(>90%). The maximum elimination capacity for both compost mixtures under the current experimental conditions was found to range from 7.5 to 10 g-DMDS/m$^3$/h. A lower DMDS maximum elimination capacity was exhibited under acidified conditions.