• Title/Summary/Keyword: pollutant exposure

Search Result 129, Processing Time 0.023 seconds

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Public Facilities, Korea

  • Kim, Ho-Hyun;Lim, Young-Wook;Jeon, Jun-Min;Kim, Tae-Hun;Lee, Geon-Woo;Lee, Woo-Seok;Lim, Jung-Yun;Shin, Dong-Chun;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.72-84
    • /
    • 2013
  • In the study, pollution levels of indoor polycyclic aromatic hydrocarbons (PAHs) in public facilities (vapor phase or particulate phase) were evaluated, and a health risk assessment (HRA) was carried out based on exposure scenarios. Public facilities in Korea covered by the law, including underground subway stations, funeral halls, child care facilities, internet cafes (PC-rooms), and exhibition facilities (6 locations for each type of facility, for a total of 48 locations), were investigated for indoor assessment. For the HRA, individual excess cancer risk (ECR) was estimated by applying main toxic equivalency factor (TEF) values suggested in previous studies. Among the eight public facilities, internet cafes showed the highest average $PM_{2.5}$ concentration at $110.0{\mu}g/m^3$ (range: $83.5-138.5{\mu}g/m^3$). When assuming a risk of facility exposure time based upon the results of the surveys for each public facility, the excess cancer risk using the benzo(a)pyrene indicator assessment method was estimated to be $10^{-7}-10^{-6}$ levels for each facility. Based on the risk associated with various TEF values, the excess cancer risk based upon the seven types cancer EPA (1993) and Malcolm & Dobson's (1994) assessment method was estimated to be $10^{-7}-10^{-5}$ for each facility. The excess cancer risk estimated from the TEF EPA (2010) assessment was the highest: $10^{-7}-10^{-4}$ for each facility. This is due to the 10-fold difference between the TEF of dibenzo(a,e)fluoranthene in 2010 and in 1994. The internet cafes where smoking was the clear pollutant showed the highest risk level of $10^{-4}$, which exceeded the World Health Organization's recommended risk of $1{\times}10^{-6}$. All facilities, with the exception of internet cafes, showed a $10^{-6}$ risk level. However, when the TEFs values of the US EPA (2010) were applied, the risk of most facilities in this study exceeded $1{\times}10^{-6}$.

Human Health Risk Assessment of Benzene from Industrial Complexes of Chungcheong and Jeonla Province (충청·전라지역 산업단지 주변지역에서의 벤젠 인체 위해성 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Shin, YongSeung;Kim, Heekap;Lee, Jonghyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.497-507
    • /
    • 2011
  • This research studied human health risk assessment of benzene from industrial complexes of Chungcheong Province (Seosan industrial complex) and Jeonla Province (Iksan industrial complex and Yeosoo industrial complex). The residents near the industrial complexes areas can be often exposed to volatile organic compounds (e.g., benzene, toluene, xylenes) through a number of exposure pathways, including inhalation of the organic pollutant via various environmental matrices (air, water and soil), contaminated water, and soil intake. Benzene is well known to be a common carcinogenic and toxic compound that is produced from industrial and oil refinery complexes. In this study, a number of samples from water, air, and soil were taken from the residential settings and public school zones located near the industrial complex sites. Based on the carcinogenic risk assessment, the risk estimates were slightly above $10{\times}10^{-6}$ at all three industrial sites. According to deterministic risk assessment, inhalation was the most important route. The distribution of benzene in the environment would be dependent on vapor pressure, and the physical property influencing the extent of the potential risks. Non-carcinogenic risk assessment of benzene shows that the values of Hazard Index(HI) were much lower than 1.0 at all industrial complexes. Therefore, benzene was not a cause of concern in terms of non-carcinogenic risk posed to the residents near the sites. When compared to probabilistic risk assessment, the CTE(central tendency exposure) cancer risk values of deterministic risk assessment were close to the mean values predicted by the probabilistic risk assessment. The RME(reasonable maximum exposure) values fell within the range of 95% to 99.9% estimated by the probabilistic risk assessment. Since the values of carcinogenic risk assessment were higher than $10{\times}10^{-6}$, further detailed monitoring and refined risk assessment for benzene may be warranted to estimate more reliable and potential inhalation risks to receptors near the industrial complexes.

A Study of Monitoring Method on Exposure Level and Biomarkers of Environmental Pollutants -Focused on Ulsan Industrial Complex Area- (지역주민 환경오염 노출수준 및 생체지표 모니터링 방법에 대한 연구 -울산지역을 중심으로-)

  • Lee, Jong-Tae;Cho, Yong-Sung;Son, Ji-Young;Lee, Joung-Won;Lee, Seung-Jun;Chung, Young-Hee;Kim, Dae-Seon;Yu, Seung-Do;Ahn, Seung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.188-198
    • /
    • 2008
  • Since 2003, the National Institute of Environmental Research (NIER) of Korea has been conducting "The monitoring study on exposure level and biomarkers of environmental pollutants" in the Ulsan industrial complex with the goals to establish a surveillance system for residents, to evaluate the health effects associated with chronic exposure to environmental pollutants and to develop the environmental health indicators in Ulsan industrial complex. This program consists of three phases an initial or foundation phase in which the program is developed, made operational and extended to the community, followed by an evaluation and accountability assessment of the surveillance system and finally an improvement in the quality of life and the maintenance of good health for Ulsan residents. In the period 2003 to 2008, the study program developed the surveillance system which will be used for the full-length survey. All participants in this study were contacted at a presentation meeting for residents, introduced to the objectives and protocols of the survey, and asked to participate. Informed consent was obtained from each participant. The study is now underway and includes questionnaires, health examinations and the analysis/collection/banking of bio-sample such as blood and urine. To date 828 subjects have participated and already 588 subjects have been followed up. We are committed to complete health examinations and to arrange storage of biosample for all participants. During the current year, we will analyze metals (Pb in blood and Cd, inorganic As and Hg in urine) in 1,972 samples and VOCs (11 species) and PARs (18 species) in 300 samples (blood sample). Moreover, the summary of the first step and the further preparation of the second step are currently underway. In this article, we introduce the study and its protocols and the distribution and size of the study participants. In conclusion, this survey will be continuously conducted on the established cohort and will enable the identification of relationship between environmental pollutant exposures and the health status of residents in Ulsan industrial complex.

Exposure to PAHs and VOCs in Residents near the Shinpyeong·Jangrim Industrial Complex (신평·장림 산단 인근 주민의 PAHs 및 VOCs 노출)

  • Yoon, Mi-Ra;Jo, HyeJeong;Kim, GeunBae;Chang, JunYoung;Lee, Chul-Woo;Lee, Bo-Eun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.131-143
    • /
    • 2021
  • Objectives: This study aims to investigate the atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) and the urinary concentration of biomarkers in residents near the Shinpyeong·Jangrim Industrial Complex to compare them with those of residents in a control area. Methods: Hazardous air pollutants (PAHs and VOCs) were measured in an exposure area (two sites) and a control area (one site). Urine samples were collected from residents near the industrial complex (184 persons) and residents in the control area (181 persons). Multiple linear regression analysis was used to identify which factors affected the concentration of PAHs and VOCs metabolites. Results: The average atmospheric concentration of PAHs in Shinpyeong-dong and Jangrim-dong was 0.45 and 0.59 ppb for pyrene, 0.15 and 0.16 ppb for benzo[a]pyrene, and 0.29 and 0.35 ppb for dibenz[a,h]anthracene. The average atmospheric concentration of VOCs was 1.10 and 0.99 ppb for benzene, 8.22 and 11.30 ppb for toluene, and 1.91 and 3.05 ppb for ethylbenzene, respectively. The concentrations of PAHs and VOCs in residents near the Shinpyeong·Jangrim Industrial Complex were higher than those of residents in the control area. Geometric means of urinary 2-hydroxyfluorene, 1-hydroxypyrene, methylhippuric acid, and mandelic acid concentrations were 0.45, 0.22, 391.51, and 201.36 ㎍/g creatinine, respectively. Those levels were all significantly higher than those in the control area (p<0.05). In addition, as a result of multiple regression analysis, even after adjusting for potential confounding factors such as gender and smoking, the concentration of metabolites in urine was high in residents near the Shinpyeong·Jangrim Industrial Complex. Conclusion: The results of this study show the possibility of human exposure to VOCs in residents near the Shinpyeong·Jangrim Industrial Complex. Therefore, continuous monitoring of the local community is required for the management of environmental pollutant emissions.

Effects of Air Pollition on Rice Plant Growth (大氣汚染이 水稻生育에 미치는 影響)

  • 신응배;박완철;허기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 1986
  • The study was performed to investigate the effects of gaseous imission of sulfur dioxide and hydrogen fluoride on the growth of rice plant under stressed field conditions. The plants were cultivated in normal paddy fields where are 88 industrial plants operating with 285 smoke stacks emitting pollutants. There has been a number of reported studies (1, 3, 11, 19, 20) which deal with rice plant damages by air pollution under a simulated exposure experimental condition. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. In korea, however, there is no study reported in literature with respect to the in-situ dose-response relationship between rice pant reduction in yields and air pollution. This study is specifically dealt with multiple effects of sulfur dioxde and hydrogen fluoride on various plant growth indicators such as leaf damage, culm height, weight of grain, panicles per hill, spikelets per panicle and percent fertility.It appears that there is a good correlation between ambient concentrations of sulfur oxides and sulfur contents found in leaves with an average correlation coefficient of 0.868 within a 1% significance level. It is interesting to note that a better multiple correlation was found between percent leaf damage and sulfur and fluoride contentd found in leaf with a significance of 1% level. The yearly correlation coefficient ranges from 0.963 to 0.987 with an average being 0.971. It is, therefore, believed that a percent leaf damage may serve as a single indicator of pollutional damages to rice plant cultivating in fields. Regarding other factors to the diminution of rice plant growth in polluted atmosphere, it appears that a significant correlation to culm length and dry weight of grain with a 1% significance level whereas T/R ratio has a good correlation with lead damage within 5% significance level. An evaluation of data observed has demonstrated that both panicles per hill and percent fertility are significantly affected by air pollutants. As expected, hydrogen fluoride has more effects than sulfur oxide. It is, however, interesting to note that spikelets per panicles has slightly been affected while no indication of effects on 1000-grain-weight has been observed. This may lead to a conclusion that a reduction in yield of rice under polluted field conditions may have more been caused by the diminution of panicles per hill and percent fertility rather than by the diminution of spikelets per panicle and grain weight.

  • PDF

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

Effects of Chitosan on the Toxicity of Environmental Pollutants (해양바이오물질이 PCB의 독성작용에 미치는 영향)

  • Lee, Hyon-Gyo;Kim, Hae-Young;Yang, Jae-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • Environmental contamination becomes a great public concern as our society gets industrialized rapidly. The present study examine the role of chitosan in a effort to intervene the environmental pollutant-induced toxicity. PCB-induced neurotoxicity with respect to the PKC signaling was examined. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. PCB showed the alteration of PKC signaling pathway. The alteration was structure-dependent. Mono-ortho-substituted congeners at a high dose showed a significant increase of total PKC activity at [$^3H$]PDBu binding assay, indicating that mono-ortho-substituted congeners are more neuroactive than non-ortho-substituted congeners in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-beta II and -epsilon were activated with mono-ortho-substituted congeners exposure. The result suggests that the position with ortho has a higher potential of altering the signaling pathway. Alteration of PKC was blocked with treatment of high molecular weight of chitosan. The study demonstrated that the ortho position in PCBs are important in assessing the structure-activity relationship. The results suggest a potential use of marine bioactive materials as a means of nutritional intervention to prevent the harmful effects of pollutant-derived toxicity.

  • PDF

Protective Effect of Cosmetics Containing Red Beet against Cigarette Smoke-induced Oxidative Damage in Human Skin (레드비트를 함유하는 화장품의 담배 연기에 의한 피부 지질 산화 방지 효과)

  • Seo, Cho Rong;Ha, Tae Hyun;Moon, Ji Young;Kim, Jeong Mi;Park, Byoung Kwon;Lee, Ji Won;Park, Jin Oh;Shin, Jin Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • In cosmetics market, anti-pollution products recently come up with new solution for skin health. Environmental oxidation mechanisms are realized as bio-marker of atmospheric pollution upon skin by environmental pollutant such as ozone, UV rays, particulate matter (PM) as well as cigarette smoke. The exposure of cigarette smoke directly or indirectly causes the oxidation of the stratum corneum skin lipids, resulting in the conversion of squalene to squalene monohydroperoxide and/or generation of malondialdehyde (MDA) as a product of lipid peroxidation. The aim of this study is to see whether new cosmetics product containing red beet has anti-oxidation effect on skin exposed by cigarette smoke. So as to determine oxidative damage to human skin at biochemical level, each unit area of volar forearms was exposed to cigarette smoke through device (3.3 cm, diameter) for fifteen minutes, then measured MDA using standardized TBARS assay kit. Compared to negative control (untreated and unexposed area), the level of MDA was significantly increased at positive control (untreated and exposed area) more than 3.7 times, indicating the pollutant induced-oxidative damage on the skin barrier. Whereas, the pre-applied area with the cosmetics products containing red beet revealed a decrease of 25% compared with positive control. As reports, these data demonstrated that cigarette smoke induce peroxidation of stratum corneum skin lipids. Conclusively, we suggest that anti-pollution effect of the cosmetics product containing red beet is beneficial to prevent the oxidation of skin lipids by atmospheric pollution.

Ecological Risk Assessment of Residual Petroleum Hydrocarbons using a Foodweb Bioaccumulation Model (먹이연쇄 생물축적 모형을 이용한 잔류유류오염물질의 생태위해성평가)

  • Hwang, Sang-Il;Kwon, Jung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.947-956
    • /
    • 2009
  • Residual petroleum hydrocarbons after an oil spill may accumulate in the marine benthic ecosystem due to their high hydrophobicity. A lot of monitoring data are required for the estimation of ecosystem exposure to residual petrochemicals in an ecological risk assessment in the affected region. To save time and cost, the environmental exposure to them in the affected ecosystem can also be assessed using a simple food-web bioaccumulation model. In this study, we evaluated residual concentrations of four selected polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and benzo[a]pyrene) in a hypothetic benthic ecosystem composed of six species under two exposure scenarios. Body-residue concentration ranged 5~250 mg/kg body depending on trophic positions in an extreme scenario in which the aqueous concentrations of PAHs were assumed to be one-tenth of their aqueous solubility. In addition, bioconcentration factors (BCFs) and bioaccumulation factors (BAFs) were evaluated for model species. The logarithm of bioconcentration factor (log BCF) linearly increased with increasing the logarithm of 1-octanol-water partition coefficient (log $K_{OW}$) until log $K_{OW}$ of 7.0, followed by a gradual decrease with further increase in log $K_{OW}$ without metabolic degradation. Biomagnification became significant when log $K_{OW}$ of a pollutant exceeded 5.0 in the model ecosystem, indicating that investigation of food-web structure should be critical to predict biomagnifications in the affected ecosystem because log $K_{OW}$ values of many petrochemicals are higher than 5.0. Although further research is required for better site-specific evaluation of exposure, the model simulation can be used to estimate the level of the ecosystem exposure to residual oil contaminants at the screening level.

Toxico-pathological Study p,p-DDE After Experimental Aerosol Exposed to ICR Mouse (환경호르몬인 p,p-DDE의 흡입 시 ICR 마우스의 폐에 미치는 독성병리학적 연구)

  • Choi Hae-Yun;Jung Tae-Young;Ku Sae-Kwang;Yang Hee-Bog;Lee Hyeung-Sik
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • In order to monitor the histological and general profiles of lung after direct expose of p,p-DDE, 1, 5 and 10 mg/ml of p,p-DDE were sprayed to male ICR mouse, and seven days after exposure, changes of body weight, lung weight, clinical signs, histological profiles of lung and total WBC in blood were investigated with changes of total cell number and their differential count in bronchoalveolar lavage fluid (BALF). In the present study, a significant and dosage-dependent decrease of body weight was detected in p,p-DDE exposed groups and body weight gains during observational periods (7 days) were also significantly and dosage-dependently decreased in p,p-DDE exposed groups compared to that of vehicle control group. In addition general depression signs were detected in all p,p-DDE exposed groups with dosage-dependent manners, and lung weights were also increased in p,p-DDE exposed groups. Congestion, hemorrhage and severe exudate were observed in the lung of p,p-DDE exposed groups with sarcomatous changes and these signs were also showed by dosage-dependent manners. In addition, foreign body pneumonia signs were observed in the lung of p,p-DDE exposed groups in histological levels. The percentage of ALSA (Area of luminal surface of alveoli) was also significantly and dosage-dependently decreased in p,p-DDE exposed groups and total blood WBC and BALF cell numbers were significantly and dosage-dependently increased in p,p­DDE exposed groups compared to that of vehicle control group and increase percentage of neutrophil, eosinophil, and lymphocyte in BALF were monitored in p,p-DDE exposed groups compared to that of vehicle control group. In conclusion, severe allergic response and/or foreign body pneumonitic changes were induced by direct exposure of p,p-DDE containing beverage. So it is considered that strong and powerful regulation was need to control production of residence of environmental pollutant especially to p,p-DDE.