• Title/Summary/Keyword: pollination ecology

Search Result 30, Processing Time 0.025 seconds

Pollination of Cleisostoma scolopendrifolium (Orchidaceae) by megachilid bees and determinants of fruit set in southern South Korea

  • Son, Hyun-Deok;Im, Hyoung-Tak;Choi, Sei-Woong
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.9-13
    • /
    • 2019
  • We investigated the pollinators of Centipede's foot orchid (Cleisostoma scolopendrifolium) at five locations in southern Korea. Only one species of megachilid bee (Megachile yasumatsui) was observed at three of the sites (Mokpo, Haenam, and Wando). We assumed that the megachilid bee worked as a sole pollinator of C. scolopendrifolium based on the visiting behavior of the bees the attached pollinia. Fruits were observed at the three locations that bees visited: 74% fruit set at Mokpo, 59% at Wando, and 31% at Haenam. By contrast, at two of the locations where megachilid bees did not visit the plants (Naju and Jindo), there were no fruits set. The differences in fruit set rates at the three orchid populations where bees were observed appear to be related to bee abundance and flower visitation rate rather than to differences in flower abundance. The pollination interaction between C. scolopendrifolium and megachilid bees appears to involve sexual deception since only male bees were attracted to the flowers. The underlying mechanism involved in this interaction needs investigation.

Foraging behavior and pollination efficiency of honey bees (Apis mellifera L.) and stingless bees (Tetragonula laeviceps species complex) on mango (Mangifera indica L., cv. Nam Dokmai) in Northern Thailand

  • Chuttong, Bajaree;Panyaraksa, Lakkhika;Tiyayon, Chantaluk;Kumpoun, Wilawan;Chantrasri, Parinya;Lertlakkanawat, Phurichaya;Jung, Chuleui;Burgett, Michael
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.154-160
    • /
    • 2022
  • Background: The mango is one of the essential fruit trees for the economy of Thailand. Mango pollination relies primarily on insects. Other external forces, such as wind, are less efficient since pollen is sticky and aggregating. There is only one report from Thailand on the use of bees as mango pollinators. The study of the behavior and pollination efficiency of honey bees (Apis mellifera) and stingless bees (Tetragonula laeviceps species complex) was conducted in Nam Dokmai mango plantings in Phrao and Mae Taeng districts, Chiang Mai province, between February and March 2019. Results: Our results reveal that the honey bees commenced foraging earlier than the stingless bee. The number of flowers visited within 1 minute by honey bees was higher than that visited by stingless bees. The average numbers of honey bees and stingless bees that flew out of the hive per minute from 7 a.m. and 6 p.m. in the Phrao district were 4.21 ± 1.62 and 9.88 ± 7.63 bees/min, respectively, i.e., higher than those observed in Mae Taeng, which were 3.46 ± 1.13 and 1.23 ± 1.20 bees/min, respectively. The numbers of fruits per tree were significantly higher in the honey bee and stingless bee treatments (T1 and T2) than in the open pollination treatment (T3). The number of fruits between T1 and T2 treatments was not different. In the pollinator exclusion treatment (T4), no fruit was produced. Fruit size factors were not significantly different among T1, T2, and T3 treatments. Conclusions: Our results showed that insect pollination is crucial for mango production, especially with the Nam Dokmai variety in Northern Thailand. As pollinator exclusion treatment showed no fruit set, and pollinator treatment significantly increased the fruit sets compared to open access plots, a managed pollinator program would benefit the mango growers for better productivity. Both the honey bee and the stingless bee were shown to be effective as pollinators.

Morphological variables restrict flower choice of Lycaenid butterfly species: implication for pollination and conservation

  • Mukherjee, Subha Shankar;Hossain, Asif
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Background: Butterflies make an important part for plant-pollinator guild. These are nectar feeder or occasionally pollen feeder and thus proboscis of the butterfly species are considered as one of the most important variable in relation to the collection of food from plants. In butterfly-plant association, nectar source is principally determined by quality of nectar, corolla length, and nectar quantity. For the butterfly, nectar uptake is determined by proboscis length because flowers with long corolla restrict butterfly species containing shorter proboscis. Empirical studies proved that butterfly species with high wing loading visit clustered flowers and species with low wing loading confined their visit to solitary or less nectar rich flowers. The present study tries to investigate the flower preference of butterfly species from Lycaenidae family having very short proboscis, lower body length, lower body weight and wing span than the most species belonging from Nymphalidae, Pieridae, Papilionidae, and Hesperiidae. Results: Butterflies with shorter proboscis cannot access nectar from deeper flower. Although they mainly visit on less deeper flower to sucking nectar, butterflies with high wing loading visits clustered flowers to fulfill their energy requirements. In this study, we demonstrated flower choice of seven butterfly species belonging to Lycanidiae family. The proboscis length maintains a positive relationship with body length and body weight. Body length maintains a positive relationship with body weight and wing span. Wing span indicate a strong positive relationship with body weight. This study proved that these seven butterfly species namely Castalius rosimon (CRN), Taracus nara (TNA), Zizinia otis (ZOT), Zizula hylax (ZHY), Jamides celeno (JCE), Chilades laius (CLA), and Psuedozizeeria maha (PMA) visit frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) and Syndrella nodiflora (SNO). The species do not visit Lantana camara (LCA) and Catharanthus roseus (CRO) plants. Conclusion: The present study proved that butterfly species visits frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) but less frequently in Syndrella nodiflora (SNO). So, that study determined the butterfly species helps in pollination of these herbs that in turn helps the conservation of these butterfly species.

Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation

  • Cho, Yoori;Lee, Dowon;Bae, SoYeon
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

Population Dynamics of Symplocarpus renifolius (2. Seed production) (앉은부채 (Symplocarpus Renifolius) 개체군의 동태 2.종자생산)

  • Kang, Hyun-Jung;Min, Byeong-Mee
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.463-469
    • /
    • 1994
  • For better understanding of population dynamics of Symplocarpus renifolius, some aspects of seed production were studied in natural populations for 3 years. The rate of reproducing plants (RP) was 8.06% among the whole studied. The RPs were 0.0% in leaf size class under 500cm2 per individual, and 3.6% in 500~1,000cm2, and 44.3% in over 3,000cm2. The resource allocated to sexual organ was 11.6% of total biomass at the end of growing season, and that to belowground was about 80% regradless of presence or absence of sexual organ. In the previous and the next years of seed production, the energy allocated to sexual organ didn't affect the changes of leaf size, year by year. After flowing season. Especially, a large number of sex organ were degraded in April, a period of pollination and fertilization. The number of seeds per individual was degraded in April, a period of pollination and fertilization. The number of seeds per individual was 13~22 and didn't relate to leaf size. But the weight per seed increased along leaf size per individual. Therefore, in S.renifolius population, large individual produced large seeds rather than many seeds.

  • PDF

Ecological Correlates of Flowering Seasons in Korean Angiosperms

  • Kang, Hye-Soon;Jang, Sun-Young
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2006
  • Ecological correlates of flowering times often are examined to infer evolutionary mechanisms for flowering time diversities. We examined ecological characteristic associations such as growth habits and pollination modes with flowering times among 3,037 Korean angiosperms experiencing strong climatic seasonalities. We first examined taxonomic membership effects on flowering times across diverse taxonomic levels. Phylogeny constrained flowering times at all levels down to the genus level. We then analyzed the effects of ecological characteristics using subset data consisting of species randomly selected from each genus to control phylogenetic effects. The commonly observed patterns of early flowering of woody species in temperate regions existed. Spring flowering shrubs and trees, however, both being woody, were involved with biotic and abiotic vectors, respectively. In two herbaceous groups of annuals and perennials, annuals flowered later in the growing season than perennials although both herbs tended to be associated with abiotic vectors when flowering in autumn. These results support our hypothesis that species able to decouple vegetative and reproductive growth flower in spring's dry season, but species with different habits, even when they flower within the same season, are subjected to different selective pressures for efficient pollination.

How effective are artificial nests in attracting bees? A review

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.152-162
    • /
    • 2021
  • Background: Recent declines in bee populations, along with increasing demand for pollination services in urban, agricultural, and natural environments, have led to strategies to attract wild bees to these areas. One of these strategies is installing artificial nests adjacent to urban gardens and agricultural farms. Bee hotels and nest boxes are among the artificial nests used by gardeners and farmers to attract pollinators. In this paper, we reviewed 50 studies that reported the efficiency of nest boxes and bee hotels in attracting bees. We considered the maximum occupation rate (percentage) as the main index to evaluate the efficiency of artificial nests. Results: The maximum occupation rate of bee hotels was higher in farms (averaged 44.1%) than in forests (averaged 30.3%) and urban (averaged 38.3%) environments. In the case of nest boxes, most studies reported efficiencies of less than 20%, with an occupation rate of 16% and 5.5% on average in forest and urban environments respectively. However, our meta-analysis results showed that there was no significant relationship between the occupation rate of the nests and their installation place. Regression analysis also showed that the structural features of bee hotels (length and diameter) and nest boxes (volume and entrance size) did not affect their efficiency in attracting bees. Conclusion: Our data showed that the strategy of installing artificial nests to attract pollinators is successful only concerning bee hotels, and the use of nest boxes has not been very successful.

Current methodologies in construction of plant-pollinator network with emphasize on the application of DNA metabarcoding approach

  • Namin, Saeed Mohamadzade;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.126-135
    • /
    • 2022
  • Background: Pollinators are important ecological elements due to their role in the maintenance of ecosystem health, wild plant reproduction, crop production and food security. The pollinator-plant interaction supports the preservation of plant and animal populations and it also improves the yield in pollination dependent crops. Having knowledge about the plant-pollinator interaction is necessary for development of pesticide risk assessment of pollinators and conservation of endangering species. Results: Traditional methods to discover the relatedness of insects and plants are based on tracing the visiting pollinators by field observations as well as palynology. These methods are time-consuming and needs expert taxonomists to identify different groups of pollinators such as insects or identify flowering plants through palynology. With pace of technology, using molecular methods become popular in identification and classification of organisms. DNA metabarcoding, which is the combination of DNA barcoding and high throughput sequencing, can be applied as an alternative method in identification of mixed origin environmental samples such as pollen loads attached to the body of insects and has been used in DNA-based discovery of plant-pollinator relationship. Conclusions: DNA metabarcoding is practical for plant-pollinator studies, however, lack of reference sequence in online databases, taxonomic resolution, universality of primers are the most crucial limitations. Using multiple molecular markers is preferable due to the limitations of developed universal primers, which improves taxa richness and taxonomic resolution of the studied community.

Roles of flower scent in bee-flower mediations: a review

  • Bisrat, Daniel;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: Bees and flowering plants associations were initially began during the early Cretaceous, 120 million years ago. This coexistence has led to a mutual relationship where the plant serves as food and in return, the bee help them their reproduction. Animals pollinate about 75% of food crops worldwide, with bees as the world's primary pollinator. In general, bees rely on flower scents to locate blooming flowers as visual clue is limited and also their host plants from a distance. In this review, an attempt is made to collect some relevant 107 published papers from three scientific databases, Google Scholar, Scopus, and Web of Science database, covering the period from 1959 to 2021. Results: Flowering plants are well documented to actively emit volatile organic compounds (VOCs). However, only a few of them are important for eliciting behavioral responses in bees. In this review, fifty-three volatile organic compounds belonging to different class of compounds, mainly terpenoids, benzenoids, and volatile fatty acid derivatives, is compiled here from floral scents that are responsible for eliciting behavioral responses in bees. Bees generally use honest floral signals to locate their host plants with nectar and pollen-rich flowers. Thus, honest signaling mechanism plays a key role in maintaining mutualistic plant-pollinator associations. Conclusions: Considering the fact that floral scents are the primary attractants, understanding and identification of VOCs from floral scent in plant-pollinator networks are crucial to improve crop pollination. Interestingly, current advances in both VOCs scent gene identification and their biosynthetic pathways make it possible to manipulate particular VOCs in plant, and this eventually may lead to increase in crop productivity.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy