• 제목/요약/키워드: polar orbit

검색결과 54건 처리시간 0.027초

Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권2호
    • /
    • pp.97-106
    • /
    • 2010
  • To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least $50\;{\times}\;50$ degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

Gravity wave activities in the polar region using FORMOSAT-3 GPS RO observations

  • Liou, Yuei-An;Yan, Shiang-Kun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.65-68
    • /
    • 2007
  • FORMOSAT-3 was launched in April of 2006. It consists of six low earth orbit (LEO) satellites that will be eventually deployed to an orbit at 800 km height. Its scientific goal is to utilize the radio occultation (RO) signals to measure the bending angles when the GPS signals transect the atmosphere. The bending angle is then used to infer atmospheric parameters, including refractivity, temperature, pressure, and relative humidity fields of global distributions through inversion schemes and auxiliary information. The expected number of RO events is around 2500 per day, of which 200 events or so fall into the polar region. Consequently, the FORMOSAT-3 observations are expected to play a key role to improve our knowledge in the weather forecasting and space physics research in the polar region. In this paper, we use temperature profiles retrieved from FORMOSAT-3 RO observations to study the climatology of gravity wave activity in the polar region. FORMOSAT-3 can provide about 200 RO observations a day in the polar region, much more than previous GPS RO missions, and, hence, more detailed climatology of gravity wave activity can be obtained.

  • PDF

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF

INTERCALIBRATION OF THE MTSAT-IR INFRARED CHANNELS WITH A POLAR ORBIT SATELLITE

  • Chung, Sung-Rae;Sohn, Eun-Ha;Ahn, Myoung-Hwan;Ou, Milim;Kim, Mee-Ja
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.554-556
    • /
    • 2005
  • Meteorological imager on the Multi-functional Transport Satellite (MTSAT-IR), which has been operating formally since 28 June 2005, was intercalibrated with a polar orbit satellite [Aqua Moderate Resolution Imaging Spectroradiometer (Aqua/MODIS)] as a well-calibrated instrument. The intercalibration method used in this study was developed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS). This was done for the infrared window channels. The differences of MTSAT-IR and MODIS were are -0.26 K for $11\;\mu m-IR$ window channel, 0.40 K for $12\;\mu m-IR$, window channel, and -0.67 K for $6.7\;\mu m-water$ vapor channel.

  • PDF

Analysis on Frozen & Sun-synchronous Orbit Conditions at the Moon

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.24.4-24.4
    • /
    • 2011
  • Frozen orbit concept is very useful in designing particular mission orbits including the Sun-synchronous and minimum altitude variation orbits. In this work, variety of frozen and Sun-synchronous orbit conditions around the Moon is investigated and analyzed. The first two zonal harmonics of the Moon, J2 and J3, are considered to determine mean orbital elements to be a frozen orbit. To check the long-term behavior of a frozen orbit, formerly developed YonSei Precise Lunar Orbit Propagator (YSPLOP) is used. First, frozen orbit solutions without conditions to be the Sun-synchronous orbit is investigated. Various mean semi-major axes having between ranges from 1,788 km to 1,938 km with inclinations from 30 deg to 150 deg are considered. It is found that a polar orbit (90 deg of inclination) having 100 km of altitude requires the orbital eccentricity of about 0.01975 for a frozen orbit. Also, mean apolune and perilune altitudes for this case is about 136.301 km and 63.694 km, respectively. Second, frozen orbit solutions with additional condition to be the Sun-synchronous orbit is investigated. It is discovered that orbital inclinations are increased from 138.223 deg to 171.553 deg when mean altitude ranged from 50 km to 200 km. For the most usual mission altitude at the Moon (100 km), the Sun-synchronous orbit condition is satisfied with the eccentricity of 0.01124 and 145.235 deg of inclination. For this case, mean apolune and perilune altitudes are found to be about 120.677 km and 79.323 km, respectively. The results analyzed in this work could be useful to design a preliminary mapping orbit as well as to estimate basic on-board payloads' system requirements, for a future Korea's lunar orbiter mission. Other detailed perturbative effects should be considered in the further study, to analyze more accurate frozen orbit conditions at the Moon.

  • PDF

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권1호
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

Comparison between Ionospheric and plasmaspheric TECs measured from JASON satellite: plasmaspheric flux

  • Lee, Han-Byul;Jee, Geon-Hwa;Kim, Yong-Ha;Chung, Jong-Kyun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.27.3-27.3
    • /
    • 2011
  • The plasmasphere is filled with the ions and electron transported mostly from the mid-latitude ionosphere. In the topside ionosphere where the $O^+$ ions are still major ions, the $O^+$ ions are in chemical equilibrium with the $H^+$ ions and exchange their charges with each other's parent atoms with similar rates in both reactions. During the day, the newly produced $H^+$ ions flow upward to fill the plasmasphere while they flow downward and contribute to the maintenance of the ionospheric density at night under the geomagnetically quiet condition. The ionosphere and plasmasphere are coupled by these plasma fluxes and therefore strongly affect each other. In order to study these coupling we utilized the plasma density measurements from JASON satellite. This satellite measures vertical total electron content (TEC) from the ground to the satellite orbit (about 1336 km) and slant TEC from the satellite orbit to much higher GPS satellites by using the on-board dual-frequency altimeter and GPS receiver, respectively. The former measurement can represent the ionospheric TEC while the latter can represent the plasmaspheric TEC in the equatorial region. We compared these data with different seasons, solar activities and local times, and the results will be presented.

  • PDF

대각 위성간 링크를 허용하는 극궤도 이동위성통신 시스템의 수학적 모델링 및 성능분석 (Mathematical Modeling and Performance Analysis of Polar Orbit Mobile Satellite Communication System Utilizing Both Neighboring and Diagonal Link)

  • 양혁;김덕년
    • 전자공학회논문지S
    • /
    • 제36S권8호
    • /
    • pp.17-29
    • /
    • 1999
  • 극궤도 위성에서의 위성간 링크를 사용하는 이리듐 시스템은 위성간 링크 통신이 핵심적인 기술이 된다. 이 시스템에서는 링크설정 면에 있어서 이웃 위성간에만 링크를 설정한다. 이는 위성간 통신을 할 동안 연결을 계속 유지해야 통신이 유지되는 단점을 가지고 있다. 제안된 새로운 시스템은 이웃 이성간 링크 뿐만 아니라 대각링크까지 허락하여 연속되는 위성간의 연결 수를 최소화하고 트래픽 부하를 중심으로써 통신 성능의 향상을 증명한다. 그리고 위성고도와 가시 위성간 거리에 따르는 최적 전개 위성 수를 계산하였다. 또한 제시한 시스템의 트래픽 파라메터와 블록킹 확률을 수학적으로 분석하여 이웃이성간 링크 방식과 성능을 비교하였다.

  • PDF