• Title/Summary/Keyword: polar cosolvent

Search Result 7, Processing Time 0.019 seconds

Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube (활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교)

  • Kim, Kang Yoon;Ro, In Bong;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

A comparison of desorption efficiency by types of solvent for polar and non-polar organic compounds collected on activated charcoal tube (활성탄관에 포집된 극성 및 비극성 유기용제 분석시 탈착용매 종류에 따른 탈착효율 비교)

  • Son, Yonjoo;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.3-18
    • /
    • 1997
  • This study was conducted to evaluate desorption efficiencies by types of desorption solvent for polar and non-polar organic compounds collected on activated charcoal tubes. Analytes tested were toluene, m-xylene, isobutyl alcohol, n-butyl alcohol, cellosolve acetate, and butyl cellosolve. Three different concentration levels of spiked sample were made. Types of cosolvent mixed with the main solvent, $CS_2$, were methanol, pentanol, and dimethylformamide (DMF) and the cosolvent for methylenechloride was methanol. The amounts of cosolvent added to the main solvent were 1, 5, and 10% by volume (v/v%), respectively. The results were as follows: 1. For all mixed solvents except 1% methanol and 1% pentanol with $CS_2$, desorption efficiency significantly increased, compared with that of $CS_2$ alone. 2. Desorption efficiency increased by increasing analyte loading on charcoal tube regardless of mixed solvents used and the material polarity. 3. For all cosolvents mixed with $CS_2$ by 1% and 5% volume, desorption efficiency for non-polar compound was significantly higher than that of polar compound. For the 10% mixed solvents and the methylenechloride mixed with methanol, the results were opposite. 4. The lowest mean percent bias of 4.79% was obtained from the 5% DMF-$CS_2$ mixed solvent, followed by 4.82% from the 10% DMF-$CS_2$ solvent while the highest bias of 23.26% was from the solvent of $CS_2$ alone. Based on the results of this study, in order to increase desorption efficiency, it is recommended to add such cosolvents as methanol, pentanol, and DMF to $CS_2$, preferably 5% by volume for analyzing polar compounds collected in charcoal tubes.

  • PDF

Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding (분말사출성형에서 초임계유체를 이용한 탈지공정)

  • 김용호;임종성;이윤우;박종구
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.

Preparation of L-PLA Microparticles using Pure and Cosolvent-modified Supercritical Carbon Dioxide (순수 초임계 이산화탄소와 극성 공용매로 변형된 초임계 이산화탄소를 이용한 L-PLA 미세입자 제조)

  • 김재훈;이상윤;김병용;유종훈;임교빈
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.385-392
    • /
    • 2003
  • Biodegradable poly (L-lactide) (L-PLA) solution in methylene chloride was precipitated into microparticles by using supercritical carbon dioxide modified with polar cosolvents. The effects of the amount of polar cosolvents, solution concentration, temperature, and solution flow rate on the formation of microparticles were investigated. The mean particle size was found to increase with the increase of solution concentration and flow rate. It was also observed that the particle size not only increases but the size distribution also becomes less uniform as the temperature increases. The percent recovery of microparticles was found to be 30∼40% at all experimental conditions. The supercritical carbon dioxide modified with methanol and ethanol was employed to enhance the recovery, resulting in significant improvement up to about 80 and 70%, for methanol and ethanol, respectively. Furthermore, the mean diameter of L-PLA microparticles was found to be less than 1 $\mu\textrm{m}$ for both cosolvents.

The Effect of Solvents on the Synthesis of Polyamideimides from Rosin-Maleic Anhydride Adduct and Diisocyanate (로진-말레산 부가물과 디이소시아네이트로부터 폴리아미드이미드의 합성시 용제의 효과)

  • Kim, Jum-Sik;Choi, Byung-Oh;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • Rosin-maleic anhydride adduct (RMA) was synthesized from rosin and maleic anhydride. The polyamideimides were obtained by reacting the adduct with two aromatic diisocyanates using sodium methoxide as catalyst. The yield and the inherent viscosity of polymers obtained by the reaction in NMP solvent were low because of the possible reaction of NMP solvent with diisocyanate monomer. The polymers were synthesized in solvent mixture of NMP and cosolvents such as xylene, acetophenone, benzonitrile, and nitrobenzene in order to minimize the side reaction of NMP with diisocyanates. The yield of polymer obtained by the reaction in NMP-nonpolar cosolvent mixtures was about 70% and that obtained by the reaction in NMP-polar cosolvent mixtures was over 90%, respectively. The polymers were either amorphous or poorly cystalline, and soluble only in highly polar solvents. The inherent viscosity of polymers ranges from 0.12-0.26dl/g. The results of thermal analysis showed that the polymer had good thermal stability with initial decomposition temperature over $330^{\circ}C$.

  • PDF

Racemic Synthesis of Novel 6'-Methylene-5'-norcarbocyclic Purine Phosphonic Acid Analogues via Mitsunobu Reaction

  • Kim, Eun-Ae;Liu, Lian Jin;Hong, Joon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2689-2694
    • /
    • 2011
  • Novel 5'-norcarbocyclic adenine and guanine phosphonic acid analogues with 6'-electronegative moiety such as unsaturated C-C bond were designed and synthesized from commercially available 2-methylene-propane-1,3-diol (4). Regioselective Mitsunobu reaction successfully proceeded from an allylic functional group (${\pm}$)-12b at low reaction temperature in polar cosolvent (DMF/1,4-dioxane) to give purine phosphonate analogues (${\pm}$)-13 and (${\pm}$)-20. The purine nucleoside phosphonate and phosphonic acid analogues were subjected to antiviral screening against HIV-1. Guanine analogue (${\pm}$)-23 shows significant anti-HIV activity in PBM cell lines ($EC_{50}=8.1\;{\mu}M$).

Absorbtion Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

  • Ajloo, Davood;Ghadamgahi, Maryam;Shaheri, Freshte;Zarei, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1440-1448
    • /
    • 2014
  • Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 ${\mu}M$ in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and $65^{\circ}C$ and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.