• Title/Summary/Keyword: point-cloud

Search Result 853, Processing Time 0.028 seconds

Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data

  • Renaudin, Erwan;Habib, Ayman;Kersting, Ana Paula
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • Currently, there is a considerable interest in 3D object reconstruction using terrestrial laser scanner (TLS) systems due to their ability to automatically generate a considerable amount of points in a very short time. To fully map an object, multiple scans are captured. The different scans need to be registered with the help of the point cloud in the overlap regions. To guarantee reliable registration, the scans should have large overlap ratio with good geometry for the estimation of the transformation parameters among these scans. The objective of this paper is to propose a registration method that relaxes/eliminates the overlap requirement through the utilization of photogrammetrically reconstructed features. More specifically, a point-based procedure, which utilizes non-conjugate points along corresponding linear features from photogrammetric and TLS data, will be used for the registration. The non-correspondence of the selected points along the linear features is compensated for by artificially modifying their weight matrices. The paper presents experimental results from simulated and real datasets to illustrate the feasibility of the proposed procedure.

The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management (도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구)

  • Lee, Jun Seok;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

LiDAR Sensor based Object Classification System for Delivery Robot Applications (배달 로봇 응용을 위한 LiDAR 센서 기반 객체 분류 시스템)

  • Woo-Jin Park;Jeong-Gyu Lee;Chae-woon Park;Yunho Jung
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, we propose a lightweight object classification system using a LiDAR sensor for delivery service robots. The 3D point cloud data is encoded into a 2D pseudo image using a Pillar Feature Network (PFN), and then passed through a lightweight classification network designed based on Depthwise Separable Convolutional Neural Networks (DS-CNN). The implementation results show that the designed classification network has 9.08K parameters and 3.49M Multiply-Accumulate (MAC) operations, while supporting a classification accuracy of 94.94%.

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.

Construction of Tree Management Information Using Point Cloud Data (포인트클라우드 데이터를 이용한 수목관리정보 구축 방안)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.427-432
    • /
    • 2020
  • In order to establish an effective forest management plan, it is necessary to investigate tree management information such as tree height and DBH(Diameter at breast height). However, research on convergence and application of data acquisition technology to improve the efficiency of existing forest survey methods is insufficient. Therefore, in this study, tree management information was constructed and analyzed using point cloud data acquired through a 3D scanner. Data on the study site was acquired using fixed and mobile 3D scanners, and the efficiency of the mobile 3D scanner was presented through comparison of working hours. In addition, tree management information for object management was constructed by classifying vegetation by object using point cloud data, and by constructing information on chest height diameter and height. As a result of the accuracy evaluation compared with the conventional measurement method, the difference in tree height was 0.02-0.09m and DBH was 0.01-0.04m. If information on the location of vegetation and crowns of each object is constructed through additional research in the future, the efficiency of the work related to forest management information construction can be greatly increased.

Synthesis and Charaterization of Polymerizable Acryl's Emulsifier to prepare Green Glue (친환경 접착제 제조용 아크릴계 반응성 유화제의 합성)

  • Jeong, Noh-Hee;Park, Jong-Kwon;Kang, Yun-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • In this study, we synthesized reactive surfactant which have functional radical group for effective chemical reaction. Reactive surfactant have been synthesized using synthesis of polyoxyethylene lauryl ether(POE 23) which is nonionic surfactant and methacrylic acid, acrylic acid. benzene was used as the solvent, p-TsOH was used as the catalyst. synthesized surfactant was confirmed by FT-IR, $^1H$-NMR spectra, and elemental analysis. Evaluation of physical properties was measured HLB, cloud point, surface tension, the critical micelle concentration, emulsifying power. HLB number was evaluated 11.62 to 12.09 range. The Critical Micelle Concentration(cmc) values evaluated was $1{\times}10^{-4}{\sim}5{\times}10^{-4}mol/L$ by surface tension method. The cloud point was $35^{\circ}C$, $39^{\circ}C$ each. The emulsifymvcqa ing properties of the synthesized surfactants was lower than polyoxyethylene lauryl ether. In addition, soybean oil was better than benzene. The experimental results confirmed the ester bond, the yield of 93.27%, 94.49% was found.

Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer (3차원 포인트 클라우드 모델링 기법을 활용한 바이오폴리머 기반 제방 보강공법의 성능 평가)

  • Ko, Dongwoo;Kang, Joongu;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.181-190
    • /
    • 2021
  • In this study, a large-scale levee breach experiment from lateral overflow was conducted to verify the effect of the new reinforcement method applied to the levee's surface. The new method could prevent levee failure and minimize damage caused by overflow in rivers. The levee was designed at the height of 2.5 m, a length of 12 m, and a slope of 1:2. A new material mixed with biopolymer powder, water, weathered granite, and loess in an appropriate ratio was sprayed on the levee body's surface at a thickness of about 5 cm, and vegetation recruitment was also monitored. At the Andong River Experiment Center, a flow (4 ㎥/s) was introduced from the upstream of the A3 channel to induce the lateral overflow. The change of lateral overflow was measured using an acoustic doppler current profiler in the upstream and downstream. Additionally, cameras and drones were used to analyze the process of the levee breach. Also, a new method using 3D point cloud for calculating the surface loss rate of the levee over time was suggested to evaluate the performance of the levee reinforcement method. It was compared to existing method based on image analysis and the result was reasonable. The proposed 3D point cloud methodology could be a solution for evaluating the performance of levee reinforcement methods.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.