• 제목/요약/키워드: point source pollution

검색결과 471건 처리시간 0.031초

강우 시 수영강 유역의 수질변화 특성 (Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event)

  • 김수현;김정선;강임석
    • 한국물환경학회지
    • /
    • 제35권1호
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

GIS를 이용한 안양천 유역의 오염부하량 산정 (Estimation of Pollution Load in Anyang Stream Basin Using GIS)

  • 최종욱;유병태;이민환;김건흥
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

낙동강 하류의 하상구조와 오염물질과의 상관관계 연구 (A Study on the Relation between Riverbed Structure and Pollutant Concentration in Downstream of Nakdong River)

  • 황선출;정성욱
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.481-494
    • /
    • 1996
  • This study was performed to investigate the relationship between concentrations of heavy metals in sediment and the depths of 27 sampling sites along the West Nakdong river in downstream of Nakdong River. The deepest site was Kangdong bridge nearby 20ft. From here, the depth was shallowed to Chidong gradually. In each site the smaller mesh was, the liger concentration of heavy metal becomed. Concentration of Zn, Cd, Cr and Cu at inflow point of Shinoe stream was 576.016 ppm, 262.307 ppm, 68.674 ppm and 61.634 ppm, respectively, the concentration was the higest at this point. From here, it was lowered gradually. The concentration of heavy metal at inflow point of Joman river was 155.328 ppm, 56.485 ppm, 25.200 ppm and 31.172 ppm, respectively, those concentrations were liger than other points with the exception of Shinoe stream. Therefore, woman river and Shinoe stream were the major source of pollution in West Nakdong river. Among two sources Shinoe stream was more important source of pollution. West Nakdong river has become lake by Noksan floodgate because it's pollution has had influence on Bonglim.

  • PDF

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

비점오염원 관리지역(소양호) 목표수질 달성도 평가 (Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution)

  • 최재완;강민지;류지철;김동일;임경재;신동석
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

Implementations of Remote Sensing, GIS, and GPS for Water Resources and Water Quality Monitoring

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Liu, Shiu-Feng;Wey, Jiun-Sheng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1191-1193
    • /
    • 2003
  • Water quantity and quality monitoring at Taipei Watershed Management Bureau (WRATB) is not only a daily business but also a long term job. WRATB is responsible for providing high quality drinking water to about four millions population in Taipei. The quality of drinking water provided by WRATB is among one of the best in Taiwan. The total area is 717 square kilometers. The water resource pollution is usually divided into two categories, point source pollution and nonpoint source pollution. Garbage disposal is the most important component of the point source pollution, especially those by tourist during holidays and weekends. Pesticide pollution, fertilizer pollution, and natural pollution are the major contributions for nonpoint source pollution. The objective of this paper is to implement remote sensing, geographic information systems, and global positioning systems to monitor water quantity and water quality at WRATB. There are 12 water quality monitoring stations and four water gauge stations at WRATB. The coordinates of the 16 stations were determined by GPS devices and created into the base maps. MapObjects and visual BASIC were implemented to create application modules for water quality and quantity monitoring. Water quality of the two major watersheds at WRATB was put on Internet for public review monthly. The GIS software, ArcIMS, can put location maps and attributes of all 16 stations on Internet for general public review and technical implementations at WRATB. Inquiry and statistic charts automatic manipulations for the past 18 years are also available. Garbage disposal by community and tourist were also managed by GIS and GPS. The storage, collection, and transportation of garbage were reviewed by ArcMap file format. All garbage cart and garbage can at WRATB can be displayed on the base maps. Garbage disposal by tourist during holidays and weekends can be managed by a PDA with a GPS device and a digital camera. Man power allocation for tourist garbage disposal management can be done in an integration of GIS and GPS. Monitoring of water quality and quantity at WRATB can be done on Internet and by a PDA.

  • PDF

토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구 (Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map)

  • 유지은;김윤지;성현찬;이경일;최지용;전성우
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

Extraction of Non-Point Pollution Using Satellite Imagery Data

  • Lee, Sang-Ik;Lee, Chong-Soo;Choi, Yun-Soo;Koh, June-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.96-99
    • /
    • 2003
  • Land cover map is a typical GIS database which shows the Earth's physical surface differentiated by standardized homogeneous land cover types. Satellite images acquired by Landsat TM were primarily used to produce a land cover map of 7 land cover classes; however, it now becomes to produce a more accurate land cover classification dataset of 23 classes thanks to higher resolution satellite images, such as SPOT-5 and IKONOS. The use of the newly produced high resolution land cover map of 23 classes for such activities to estimate non-point sources of pollution like water pollution modeling and atmospheric dispersion modeling is expected to result a higher level of accuracy and validity in various environmental monitoring results. The estimation of pollution from non-point sources using GIS-based modeling with land cover dataset shows fairly accurate and consistent results.

  • PDF

지형공간 정보체계를 이용한 농업비점오염원모델의 인터페이스 개발 (Development of Interface for the Agricultural Non-point Source Model Geo-Spatial Information System)

  • 양인태;최연재;김동문;권혁원
    • 한국측량학회지
    • /
    • 제17권4호
    • /
    • pp.393-401
    • /
    • 1999
  • 비점오염원은 하천수질에 심각한 위협을 주고 있기 때문에, 이것을 해결하기 위한 비점 오염 모델이 개발되었다. 이 비점 오염 모델들은 정확한 예상을 하기 위해 정밀한 공간적 자료를 요구한다. 따라서 공간자료를 효과적으로 처리 및 분석할 수 있는 기법인 지형공간 정보체계를 이용하는 것이 효과적이라 할 수 있다. 지형공간정보체계는 비점오염 모델의 매개변수인 경사, 경사 형태, 경사 길이, SCS 곡선 지수 등을 제공한다. 따라서 이 연구는 미국 농무성과 미네소타주 연구소에서 개발된 AGNPS 모델에 지형공간정보체계를 적용하는 방법에 대하여 검토하고 지형공간정보체계를 이용한 AGNPS모델에서 요구하는 아스키 형태의 입력자료로 구축하는 인터페이스를 개발하였다.

  • PDF

청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정 (Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road)

  • 이춘원;강선홍;최이송;안태웅
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.