• Title/Summary/Keyword: point rainfall

Search Result 582, Processing Time 0.018 seconds

Ecological Characteristics of Leading Shoot Elongation in the Plantation (I) (조림목(造林木) 신초생장(新稍生長)의 생태학적특성(生態學的特性)에 관(關)한 연구(硏究) (I))

  • Ma, Sang Kyu;Kuk, Ung Hum
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.37-43
    • /
    • 1980
  • This study have done to get the basical information that would be useful to make the ecological planting, selection of suitable species and weeding plan by the relation between the leading shoot elongation of several species and the climatic factors in the plantation. Sampling measurement have been done in the trial forest of Korean German Forest Management Project located in Joil-ri, Samnam-myeon and Ichcon-ri, Sangbug-myeon, Ulju-gun. The former is in lowland at 100m latidude and the latter is in highland of 600 m latitude. The elongation of leading shoot has been measured in the plantation with 10 days interval from the beginning of March in 1979 and the climatic datas has gotten in the weather station closed to the plantation. 1. The change of air temperature and rainfall in each measuring site is like Fig 1. and 2. The similar temperature in 600 m high latitude is coming about 10 days latter than 100 m latitude. 2. Genus pine as Pinus thunbergii, P. rigida, P. rigitaeda. P. koraiensis and P. taeda begin their leading shoot growth during March and air temperature in that time is around $6^{\circ}C$. In highland their beginning of leading shoot elongation has been found out 10 days latter than lowland. However Abies, Larix and Picea has shown to open their leading shoot during May, 40 days late in comparing with genus pine, and then temperature is making around $15^{\circ}C$. But Cryptomeria, Chamaecyparis and Cedrus deodora has shown their leading shoot opening in March in lowland and May in high land. The reason of late opening, specially in highland, seems to be the influence of winter frost. 3. Most of leading shoot elongation of genus pine has finished during the end 10 days of April and May under range of air temperate $10^{\circ}C$ and $20^{\circ}C$ and other species has finished most of their elongation during the end 10 days of May and June with air temperature range of $18^{\circ}C$ to $20^{\circ}C$. So the suitable season of weeding works show to genus pine in May and other species in June. 4. The leading shoot growth of genus pine has started earlier and closed earlier too than other species and, when over than $20^{\circ}C$ air temperature, their growth is decreasing quickly. Pices abies as well show to be decreased suddenly in over than $20^{\circ}C$ temperature. Other species show the similar trend when over than $22^{\circ}C$. This reason is considered as high temperature of summer season. 5. Annual elongated days of leading shoot of Picea abies is 50 days, Abies hollophylla 70 days, and more than 85 percentage of shoot growth of Pinus koraiensis and Larix leptolepsis are growing during 70 dys as well. The shoot growing days of Chamaecyparis, P. rigida, P. rigitaeda, P. taeda and P. shunbergii show longer period as over than 120 days. 6. The shoot elongation times per year of Abies and Picea has closed as one times and Genus pine is continuring their elongation more than two times. But Cryptomeria, Chamaecyparis, Cedrus deodora and Larix show one or two times elongation depending on the measuring site. The reason of continuring elongation more than than two times seems to be influenced by the temperature in summer season except the genetical reason. 7. Depending on the above results, as the high temperature in summer season could give the influence to grow the leading shoot in the plantation, this would be the considering point on the ecological planting and selection of the suitable species to the slope aspect. The elongation pattern by the season show to be the considering point too to decide the the weeding and fertilizer dressing time by the species.

  • PDF

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF