• Title/Summary/Keyword: point foundation(pf)

Search Result 2, Processing Time 0.015 seconds

Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test (대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석)

  • Kang, Min-Su;Jo, Myung-Su;Koh, Yong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.