• Title/Summary/Keyword: pneumatic frarcturing

Search Result 1, Processing Time 0.014 seconds

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.