• 제목/요약/키워드: pluripotent

검색결과 224건 처리시간 0.027초

Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation

  • Lee, Ji Yoon;Kim, MyungJoo;Heo, Hye-Ryeon;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Yang, Se-Ran;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.971-978
    • /
    • 2018
  • The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.

Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells

  • In-Won Lee;Hyeon-Geun Lee;Dae-Ky Moon;Yeon-Ji Lee;Bo-Gyeong Seo;Sang-Ki Baek;Tae-Suk Kim;Cheol Hwangbo;Joon-Hee Lee
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.109-120
    • /
    • 2023
  • Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

A Simple Method for Generating Cerebral Organoids from Human Pluripotent Stem Cells

  • Yean Ju Hong;So been Lee;Joonhyuk Choi;Sang Hoon Yoon;Jeong Tae Do
    • International Journal of Stem Cells
    • /
    • 제15권1호
    • /
    • pp.95-103
    • /
    • 2022
  • Background and Objectives: In recent years, brain organoid technologies have been the most innovative advance in neural differentiation research. In line with this, we optimized a method to establish cerebral organoids from feeder-free cultured human pluripotent stem cells. In this study, we focused on the consistent and robust production of cerebral organoids comprising neural progenitor cells and neurons. We propose an optimal protocol for cerebral organoid generation that is applicable to both human embryonic stem cells and human induced pluripotent stem cells. Methods and Results: We investigated formation of neuroepithelium, neural tube, and neural folding by observing the morphology of embryoid bodies at each stage during the cerebral organoid differentiation process. Furthermore, we characterized the cerebral organoids via immunocytochemical staining of sectioned organoid samples, which were prepared using a Cryostat and Vibratome. Finally, we established a routine method to generate early cerebral organoids comprising a cortical layer and a neural progenitor zone. Conclusions: We developed an optimized methodology for the generation of cerebral organoids using hESCs and hiPSCs. Using this protocol, consistent and efficient cerebral organoids could be obtained from hiPSCs as well as hESCs. Further, the morphology of brain organoids could be analyzed through 2D monitoring via immunostaining and tissue sectioning, or through 3D monitoring by whole tissue staining after clarification.

Myogenic Satellite Cells and Its Application in Animals - A Review

  • Singh, N.K.;Lee, H.J.;Jeong, D.K.;Arun, H.S.;Sharma, L.;Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1447-1460
    • /
    • 2009
  • Myogenic satellite cells have been isolated and identified by several recently elucidated molecular markers. Furthermore, knowledge about the precise function of these markers has provided insight into the early and terminal events of satellite cells during proliferation, differentiation, transdifferentiation, specification and activation. Recently, quiescent myogenic satellite cells have been associated with possession of Pax 3 and 7 that represent pluripotent stem cells capable of differentiating into other lineages. However, the mechanism by which myogenic satellite cells attain pluripotent potential remain elusive. Later, transdifferentiating ability of these cells to another lineage in the absence or presence of certain growth factor/ or agents has revolutionized the scope of these pluripotent myogenic satellite cells for manipulation of animal production (in terms of quality and quantity of muscle protein) and health (in terms of repair of skeletal muscle, cartilage or bone).

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Transgenesis and Germ Cell Engineering in Domestic Animals

  • Lee, C.K.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.910-927
    • /
    • 2003
  • Transgenesis is a very powerful tool not only to help understanding the basics of life science but also to improve the efficiency of animal production. Since the first transgenic mouse was born in 1980, rapid development and wide application of this technique have been made in laboratory animals as well as in domestic animals. Although pronuclear injection is the most widely used method and nuclear transfer using somatic cells broadens the choice of making transgenic domestic animals, the demand for precise manipulation of the genome leads to the utilization of gene targeting. To make this technique possible, a pluripotent embryonic cell line such as embryonic stem (ES) cell is required to carry genetic mutation to further generations. However, ES cell, well established in mice, is not available in domestic animals even though many attempt to establish the cell line. An alternate source of pluripotent cells is embryonic germ (EG) cells derived from primordial germ cells (PGCs). To make gene targeting feasible in this cell line, a better culture system would help to minimize the unnecessary loss of cells in vitro. In this review, general methods to produce transgenic domestic animals will be mentioned. Also, it will focus on germ cell engineering and methods to improve the establishment of pluripotent embryonic cell lines in domestic animals.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

구강조직유래 유도만능줄기세포-생체재료 복합체의 재생의료 동향 (Regenerative medicine using dental tissue derived induced pluripotent stem cell-biomaterials complex)

  • 전수경;이해형;김해원;이정환
    • 대한치과의사협회지
    • /
    • 제55권12호
    • /
    • pp.828-840
    • /
    • 2017
  • In recent years, many researchers and clinicians found interest in regenerative medicine using induced pluripotent stem cells (iPSCs) with biomaterials due to their pluripotency, which is able to differentiate into any type of cells without human embryo, which of use is ethically controversial. However, there are limitations to make iPSCs from adult somatic cells due to their low stemness and donor site morbidity. Recently, to overcome above drawbacks, dental tissue-derived iPSCs have been highlighted as a type of alternative sources for their high stemness, easy gathering, and their complex (ectomesenchymal) origin, which easily differentiate them to various cell types for nerve, vessel, and other dental tissue regeneration. In other part, utilizing biomaterials for regenerative medicine using cell is recently highlighted because they can modulate cell adhesion, proliferation and (de)differentiation. Therefore, this paper will convey the overview of advantages and drawbacks of dental tissue-derived iPSCs and their future application with biomaterials.

  • PDF

Human Pluripotent Stem Cell-Derived Alveolar Epithelial Cells as a Tool to Assess Cytotoxicity of Particulate Matter and Cigarette Smoke Extract

  • Jung-Hyun Kim;Minje Kang;Ji-Hye Jung;Seung-Joon Lee;Seok-Ho Hong
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.155-163
    • /
    • 2022
  • Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-β, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 ㎍/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.