• Title/Summary/Keyword: plinth

Search Result 9, Processing Time 0.024 seconds

Rectus Femoris Action Potentials under 4 Positions during Straight Leg Raising (하지거상운동시 자세변화에 따른 대퇴직근의 활동전위)

  • Kim, Ho-Sung;Yu, Chang-Joon;Hong, Seung-Ho;Current, Marion E.
    • Physical Therapy Korea
    • /
    • v.2 no.1
    • /
    • pp.44-50
    • /
    • 1995
  • The purpose of this study was to investigate which of 4 positions produced the highest action potential in the rectus femoris muscle of normal adult subjects. Testing was performed in supine with the right leg performing a simple straight leg raise with the knee fully extended. The left leg, however, was placed in 4 different positions: 1. Full support with $0^{\circ}$ flexion. 2. Flexed on the plinth with $60^{\circ}$ knee flexion and foot flat. 3. Same as N0.2 but with $90^{\circ}$ knee flexion. 4. Left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion, $0^{\circ}$ hip flexion and no foot support. This study was designed to compare the level of electromyographic activity of the rectus femoris under 4 positions. Fourty-three healthy young adults performed three trials of each exercise condition in random order in the supine position. Electromyographic activity was recorded from surface electrodes. Rectus femoris action potentials in all 4 positions were significantly different. The highest action potential at the end of movement of the right leg occurred with the left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion. It is therefore recommended the straight leg raising be performed with the contralateral leg flexed at $90^{\circ}$ over the end of the supporting surface to obtain a maximum rectus femoris isometric contraction.

  • PDF

Geomagnetism measured in DZN (Daejeon) Geomagnetic Observatory and its time-variation (대전지자기관측소에서 측정된 지자기 값과 시간에 따른 변화)

  • Lim, Mu-Taek;Park, Yeong-Sue;Rim, Hyeong-Rae;Koo, Sung-Bon;Lee, Young-Cheol;Na, Jae-Shin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.353-360
    • /
    • 2007
  • KIGAM has installed a FLARE+ continuous geomagnetic observation system in 1998 in Daejeon of which the IAGA identification code is DZN. The coordinates of the absolute measurement plinth precisely determined by the PDGPS(Post-Processing Differential Global Positioning System) is (127-21-37.19E, 36-22-43.96N, 45.93 m) in WGS84 for the horizontal and from the geoid surface for the vertical. Periodically we have conducted the absolute geomagnetic measurement on the plinth above. We have processed the continuous time-variation 3-axis geomagnetic data measured on arbitrary sensors' coordinates in the observatory and absolute geomagnetic data together to get as the results the time-variation H(orizontal), D(eclination), Z(vertical down), F(scalar calculated from 3 components) and P(Proton Precession Magnetometer Data). We have compared our own data with those calculated from the 10th generation IGRF(International Geomagnetic Reference Field). All the measured data in the DZN Observatory can be acquired through the website http://geomag.kigam.re.kr.

  • PDF

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Recent Techniques for Design and Construction of CFRD (CFRD의 최근 설계ㆍ시공기술 동향)

  • Park Dong-Soon;Kim Hyoung-Soo;Lim Jeong-Yeul
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2005
  • CFRD(Concrete Faced Rockfill Dam) is in widespread use because this type of dam has superior characteristics in structural, material aspects comparing with earth cored rockfill dam. On this paper, up-to-date re-searches and techniques are summed up to be available for future needs in design and construction of CFRD. For example, such items as embankment using weak rock, experience of sand-gravel fill CFRD, connecting slab applied between plinth and face slab, raising experience of old dm, inverse filtration problem, environmental friendly zone, thickness and reinforcing of face slab, alluvial foundation treatment, and curb element method, are summarized for understanding of related engineers.

The changes of rectus abdominis muscle thickness according to the angle during active straight leg raise

  • Lee, Hwang Jae;Shin, Kil Ho;Byun, Sung Mi;Jeong, Hyeon Seo;Hong, Ji Su;Jeong, Su Ji;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • Objective: The purpose of this study was to investigate changes of abdominal muscles thickness according to the angle during the active straight leg raise (ASLR) in young healthy subjects. Design: Cross sectional study. Methods: Twenty-three healthy university students (13 men and 10 women) voluntary participated to the study in S University. The ASLR was performed with the subject lying supine with lower extremities straight on a standard plinth, hands resting on the chest, and elbows on the plinth. When one subject performed ASLR from each angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), compared changes in the thickness of rectus abdominis muscle. Changes in muscle thickness during ASLR test were assessed with ultrasonography. All subjects were to provide enough time of rest after performed ASLR. Rectus abdominis thickness were measured using rehabilitative ultrasound image. Results: Good quality rectus abdominal muscle activation data were recorded during ASLR. The length changes of linea alba showed significantly shorter in between $0^{\circ}$ and $30^{\circ}$ (p<0.05). The thickness of rectus abdominis muscle were significantly different between $0^{\circ}$ and $30^{\circ}$, $0^{\circ}$ and $45^{\circ}$, $0^{\circ}$ and $60^{\circ}$, $0^{\circ}$ and $90^{\circ}$. According to increase of pelvic angle, the thickness of rectus abdominis muscle were more thickening (p<0.05). Conclusions: This result is changes of abdominal muscles thickness according to the angle during the ASLR.

  • PDF

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Effects of Joint Position on the Distraction Distance in Patients with Adhesive Capsulitis of Glenohumeral Joint

  • Park, Sam Sik;Kim, Ki Do;Hwang, Yong Pil;Moon, Ok Kon;Kim, Bo Kyung;Choi, Wan Suk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.824-827
    • /
    • 2015
  • The purpose of this study was to investigate the effects of joint position on the distraction distance in patients with adhesive capsulitis of glenohumeral joint. The study was conducted upon 20 adults in their 40's with the findings of adhesive capsulitis of glenohumeral joint. These subjects were subdivided into 3 groups, which were a group with neutral position(n=7), second group with resting position(n=7) and third group with end-range position(n=6). After having the subject wearing sleeveless shirts exposing armpit and lying straight on the plinth, a physical therapist with OMT qualification pulled glenohumeral joint at the Grade III of Kaltenborn-Evjenth traction; and the distance between glenoid fossa and humeral head was measured with ultrasound. Following the application of traction, the group with resting position($.67{\pm}0.29$) exhibited the longest distance between humeral head and glenoid fossa, and it was followed by neutral position($.50{\pm}0.25$) and end-range position($.35{\pm}.21$) in this order. From the comparison of these groups, there was no significant difference in distraction distance between resting position and neutral position; and there was again no significant difference in distraction distance between end-range position and neutral position. However, there was a significant difference in distraction distance between end-range position and resting position(p<.05). Upon application of the Grade III of Kaltenborn-Evjenth traction, it was evident that the distance between humeral head and glenoid fossa can be varied depending on the location of the joint.

Numerical Simulation for Evaluation the Feasibility of Using Sand and Gravel Contaminated by Heavy Metals for Dam Embankment Materials (중금속으로 오염된 사력재의 댐축조 재료 활용 가능성 평가를 위한 수치 모델링)

  • Suk, Hee-Jun;Seo, Min-Woo;Kim, Hyoung-Soo;Lee, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.209-221
    • /
    • 2007
  • Numerical analysis was performed to investigate the effect of heavy metal contamination on neighboring environment in case a dam is constructed by using rockfill materials contaminated by heavy metals. The numerical simulation carried out in this research includes both subsurface flow and contaminant transport in the inside of the CFRD(Concrete Faced Rockfill Dam), using two commercial programs, SEEP2D and FEMWATER. The three representative cases of scenarios were chosen to consider a variety of cases occurring in a dam site; (1) Scenario 1 : no crack in the concrete face slab, (2) Scenario 2 : a crack In the upper part of face slab, and (3) Scenario 3 : a crack between plinth and face slab in the lower part of face slab. As a result of seepage analysis, the amount of seepage in scenario 2 was calculated as $14.31\sim14.924m^3/day$ per unit width, corresponding to the 1,000 times higher value than that in other scenarios. Also, in the simulation of contaminant transport by using FEMWATER, specified contaminant concentration of 13 ppb in main rockfill zone was set to consider continuous leakage from the rock materials. Through the analysis of contaminant transport, we found that elapsed times to take for the contaminant concentration of about 2 ppb to arrive at the end of a dam are as follows. Scenario 1 has the elapsed time of 55,000 years. In Scenario 2. it is 50 years. Finally, scenario 3 has 27,000 years. The rapid transport of the contaminant in scenario 2 was attributed to greater seepage flow by 500 times than other scenarios. Although, in case of upper crack in the face slab, it was identified that the contaminant might transport to the end of a dam within 100 years with about 2 ppb concentration, however, it happened that the contaminant was hardly transported out of the dam in other scenarios, which correspond to either no crack or a crack between plinth and face slab. In conclusion, the numerical analysis showed that the alternative usage of the contaminated sand and gravel as the dam embankment material can be one of the feasible methods with the assumption that the cracks in a face slab could be controlled adequately.