• 제목/요약/키워드: platinum electrode

검색결과 268건 처리시간 0.026초

상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구 (A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode)

  • 손민규;서현웅;신인영;김진경;홍지태;채원용;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

산화제 첨가에 따른 백금 전극 물질의 연마 특성 (Polishing Characteristics of Pt Electrode Materials by Addition of Oxidizer)

  • 고필주;김남훈;이우선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1384-1385
    • /
    • 2006
  • Platinum is a candidate of top and bottom electrode in ferroelectric random access memory and dynamic random access memory. High dielectric materials and ferroelectric materials were generally patterned by plasma etching, however, the low etch rate and low etching profile were repoted. We proposed the damascene process of high dielectric materials and ferroelectric materials for patterning process through the chemical mechanical polishing process. At this time, platinum as a top electrode was used for the stopper for the end-point detection as Igarashi model. Therefore, the control of removal rate in platinum chemical mechanical polishing process was required. In this study, an addition of $H_{2}O_{2}$ oxidizer to alumina slurry could control the removal rate of platinum. The removal rate of platinum rapidly increased with an addition of 10wt% $H_{2}O_{2}$ oxidizer from 24.81nm/min to 113.59nm/min. Within-wafer non-uniformity of platinum after chemical mechanical polishing process was 9.93% with an addition of 5wt% $H_{2}O_{2}$ oxidizer.

  • PDF

금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발 (Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • 제11권4호
    • /
    • pp.489-496
    • /
    • 1996
  • Carbon paste electrode를 채용함으로써 L-lac tate 측정용의 전기화학식 바이오센서를 성공적으로 개발할 수 있었다. 특히 뛰어난 electrocatalytic activity를 갖는 platinum이 첨가된 platinum-CPE 를 이용하여 낮은 전위에서의 NADH의 전기척 산 화가 가능하였다. Enzyme (lactate dehydrogen­a ase)과 $NAD^+$를 carbon paste형식으로 직접 제조 함으로써 L-lactate 측정을 위한 성공적인 바이요센 서의 개발이 가능하였다. 위와 같은 개발연구를 통 하여 다른 $NAD^+$ -dependent dehydrogenase를 채 용한 바이오센서로의 적용이 기대된다.

  • PDF

콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조 (Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method)

  • 박진남
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.59-64
    • /
    • 2013
  • 고분자전해질 연료전지에서 사용되는 전도성 카본에 백금이 담지된 전극촉매를 콜로이드법을 이용하여 합성하였다. 콜로이드법 합성을 위한 백금 전구체로는 PSA (platinum sulfite acid)를 사용하였으며, 고가의 전구체를 대체하기 위해 CPA (chloroplatinic acid)를 사용하여 합성하였다. PSA를 전구체로 하여 제조한 전극촉매는 10~40 wt% 담지량에서 3.5 nm 이하의 백금 입자크기와 90% 이상의 백금 담지수율을 보였다. CPA를 전구체로 사용한 경우에는 10~40 wt% 담지량에서 4.4 nm 이하의 백금 입자 크기를 보였으며 담지수율은 80% 이상이었다. 제조한 20 wt% Pt/VXC72 전극촉매로 MEA (membrane electrode assembly)를 제조하여 I-V 곡선을 측정하였으며, 제조한 전극촉매를 이용한 막전극접합체는 상용전극촉매를 사용한 경우와 동등한 성능을 보였다.

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • 김근호;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

인산형 연료전지 성능 특성에 미치는 전극 제조 조건의 영향 (Effects of electrode fabrication conditions on performance characteristics of phosphoric acid fuel cell)

  • 송락현;김창수;신동렬
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.224-229
    • /
    • 1996
  • Performance characteristics of single cell in phosphoric acid fuel cell were studied for various electrode fabrication parameters such as teflon content, electrode structure, thickness of electrocatalyst layer, platinum content and electrode area. The performance of single cell was decided from the measured voltage-current through a load change. The electrode of 40wt.% teflon exhibited high initial performance of single cell, but in the long term operation, the cell performance of 45 wt.% teflon was better. Also the single cell appeared good performance in case of electrodes with duplicate structure, thin electrocatalyst in thickness, more platinum content, and small area. These results of cell performance were discussed as related to the electrolyte flooding, formation of 3 phase boundary area, internal resistance of electrode, and microstructure of electrode.

  • PDF

백금 무전해 도금 방법의 변화에 따른 이온성 고분자 및 금속 복합체 액추에이터의 특성 분석 (Characterization of Ionic-Polymer Metal Composite Actuators Varying Electroless Plating Method of Platinum)

  • 차승은;김병목;조성환;이승기;박정호;김병규
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.601-607
    • /
    • 2002
  • IPMC(Ionic Polymer Metal Composite)actuators were optimized for producing improved forces by changing multiple parameters including repetition of number of plating, surface electroding and additive(PVP)-treatment on reduction. The platinum electrode is deposited on the surface of the material where platinum particle stay in a dense form that appears to introduce a significant level of surface electrode resistance. Actuation tests were performed for such IPMC actuators under a low voltage. The test results show that the lower surface-electrode resistance generates higher actuation capability in the IPMC actuators. In order to investigate relaxation behavior of bending and repeatability in dry condition, the IPMC was coated by$rubber(KRATON^{TM})$to minimize the effect of water evaporation from IPMC. This actuator can be used in air with surface coating to avoid membrane drying.

백금족 전력 계면에서 전기화학적 Impulse 발진 (Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces)

  • 전장호;손광철;라극환
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

Novel Application of Platinum Ink for Counter Electrode Preparation in Dye Sensitized Solar Cells

  • Kim, Sang Hern;Park, Chang Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.831-836
    • /
    • 2013
  • Platinized counter electrode is common in most of the dye sensitized solar cell (DSSC) researches because of its high catalytic activity and corrosion stability against iodine in the electrolyte. Platinum (Pt) film coating on fluorine doped tin oxide (FTO) glass surface by using alcoholic solution of hexachloroplatinic acid ($H_2PtCl_6$), paste containing Pt precursors or sputtering are widely used techniques. This paper presents a novel application of Pt ink containing nanoparticles for making platinized counter electrode for DSSC. The characteristics of Pt films coated on FTO glass surface by different chemical methods were compared along with the performance parameters of the DSSCs made by using the films as counter electrodes. The samples coated with Pt inks were sintered at $300^{\circ}C$ for 30 minutes whereas Pt-film and Pt-paste were sintered at $400^{\circ}C$ for 30 minutes. The Pt ink diluted in n-hexane was found to a promising candidate for the preparation of platinized counter electrode. The ink may also be applicable for DSSC on flexible substrates after optimization its sintering temperature.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.