• Title/Summary/Keyword: plate shapes

Search Result 485, Processing Time 0.027 seconds

Plate on non-homogeneous elastic half-space analysed by FEM

  • Wang, Yuanhan;Ni, Jun;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.127-139
    • /
    • 2000
  • The isoparametric element method is used for a plate on non-homogenous foundation. The surface displacement due to a point force acting on the non-homogeneous foundation is the fundamental solution. Based on this analysis, the interaction between the foundation and plate can be determined and the reaction of the foundation can be treated as the external force to the plate. Therefore, only the plate needs to be divided into some elements. The method presented in this paper can be used in cases such as thin or thick plate, different plate shapes, various loading, homogenous and non-homogenous foundations. The examples in this paper show that this method is versatile, efficient and highly accurate.

FREE VIBRATION ANALYSIS OF PERFORATED PLATE WITH SQUARE PENETRATION PATTERN USING EQUIVALENT MATERIAL PROPERTIES

  • JHUNG, MYUNG JO;JEONG, KYEONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.500-511
    • /
    • 2015
  • In this study, the natural frequencies of the perforated square plate with a square penetration pattern are obtained as a function of ligament efficiency using the commercial finite-element analysis code ANSYS. In addition, they are used to extract the effective modulus of elasticity under an assumption of a constant Poisson's ratio. The effective modulus of elasticity of the fully perforated square plate is applied to the modal analysis of a partially perforated square plate using a homogeneous finite-element analysis model. The natural frequencies and the corresponding mode shapes of the homogeneous model are compared with the results of the detailed finite-element analysis model of the partially perforated square plate to check the validity of the effective modulus of elasticity. In addition, the theoretical method to calculate the natural frequencies of a partially perforated square plate with fixed edges is suggested according to the Rayleigh-Ritz method.

THE FIRST AND THE SECOND FUNDAMENTAL PROBLEMS FOR AN ELASTIC INFINITE PLATE WITH HOLES

  • El-Bary, Alaa Abd.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.899-907
    • /
    • 2001
  • Complex variable methods are used to solve the first and the second fundamental problems for infinite plate with two holes having arbitrary shapes which are conformally mapped on the domain outside of the unit circle by means of rational mapping function. Some applications are investigated and some special cases are derived.

An Investigation of Deformation Behavior of Plate Ends in Edge Rolling (후판 에지압연시 선후단부의 변형거동)

  • 천명식;황상무;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1278-1284
    • /
    • 1992
  • In plate rolling, it is desired to reduce the trimming loss by controlling the formation of defective end shapes. For this reason, edge rolling is frequently performed in the plate mill. In this paper, the effect of various process variables on the deformation of plate ends in edge rolling is examined by conducting experiments and finite element computer simulation. A focus is given to investigating the effect of edging on the width of the deformed plate trimming-free plate rolling.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate (알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계)

  • 장창두;하윤석;조영천;신광복
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

Generation of Cutting Path Data for Two Steps of the Cutting Process in Full- Automated VLM-ST (VLM-ST 공정의 완전 자동화를 위한 2단계 절단 경로 데이터 생성 방법에 관한 연구)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.140-148
    • /
    • 2004
  • A novel rapid prototyping (RP) process, a full-automated transfer type variable lamination manufacturing process (Full-automated VLM-ST) has been developed. In the full-automated VLM-ST process, a vacuum chuck and a rectilinear motion system transfer the EPS foam material in the form of the plate with two pilot holes to the rotary supporting stage. The supplied material is then cut into an automated unit shape layer (AUSL) with a desired width, a desired length, a desired slope on the side surface, and a pair of reference shapes, which is called the guide shape (GS)’, including two pilot holes in accordance with CAD data through cutting in two steps using a four-axis synchronized hotwire cutter. Then, each AUSL is stacked by setting each AUSL with two pilot holes in the building plate with two pilot pins, and subsequently, adhesive is applied onto the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously given to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly and automatically fabricated. This paper describes the method to generate guide shapes in AUSL data for the full-automated VLM-ST process. In order to examine the applicability of the method to generate guide shapes, three-dimensional shapes, such as a piston shape and a human head shape, are fabricated from the full-automated VLM-ST apparatus.

A Study on the Application of Line Array Roll Set Process to Shipbuilding Industry (선형 배열 롤 셋 공정의 조선 산업 적용에 관한 연구)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.289-292
    • /
    • 2009
  • The line array roll set process, as one of many kinds of incremental forming processes, is a continuous process in which a flat metal plate is formed into a singly or doubly curved plate through successive passes of forming rolls. It was found that the curvature level of the formed plates in the previous study was well over the curvature required in shipyards. This fact shows that the LARS method has considerable potential for shipbuilding applications. In a shipbuilding yard, hull forming is an important fabrication process in which flat plates are deformed into singly or doubly curved plates. The major purpose of the present study is to estimate experimentally the general applicability of the line array roll set process for the manufacture of ship hull plates. In this study, the target shapes are selected through investigation of the shape classification of ship hull plates that comprise a certain vessel. Forming processes for twisted shapes are analyzed with the finite element method (FEM). Finally, the results of experimental work for two types of target shapes are presented.

  • PDF

ZnO Nanoparticles with Hexagonal Cone, Hexagonal Plate, and Rod Shapes: Synthesis and Characterization

  • Kim, Sun-Young;Lee, In-Su;Yeon, Yun-Seon;Park, Seung-Min;Song, Jae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1960-1964
    • /
    • 2008
  • The roles of coordinating ligands (TOPO, OA, HDA, and TDPA) for the synthesis of ZnO nanoparticles are investigated. Various shapes (hexagonal cone, hexagonal plate, and rod) and sizes (5-100 nm) of ZnO nanoparticles are prepared in relation to the coordinating ligands. The hexagonal shapes ($\leq$ 100 nm) are synthesized with TOPO and OA, while smaller size nanorods (5 ${\times}$ 30 nm) are with TOPO and TDPA. The relative intensities of two distinctive emission bands centered at 385 and 500 nm, which are related to the exciton and defect states, respectively, depend on the crystal qualities of ZnO nanoparticles affected by the coordinating ligands. The intense UV emissions with the reduced visible emissions are found in the monodisperse nanoparticles such as hexagonal cones and nanorods, suggesting that the monodispersity as well as the crystallinity is closely related to the coordinating ligands. The blue-shift of photoluminescence and absorption edge is observed in the nanorods, because the sizes of the nanorods are in the quantum confinement regime.

A Study On Shape Design of Implant Systems For Bone Fracture Operations By Using Finite Element Method (유한요소법을 이용한 골절치료용 임플란트 시스템 형상설계에 관한 연구)

  • Cho, Ji-Hyun;Seo, Keum-Hee;Seo, Tae-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.425-432
    • /
    • 2012
  • This paper investigates shape design processes of two implant systems for bone fracture treatment ; Bone plate and Interlocking nail system. These systems can directly fix fractured human bones by surgical operations. The bone plates consist of various shaped plates and implant screws for fixation of fractured human bones with various manual instruments allowing to handle them. The material corresponds to titanium alloy Ti6Al4V because it is harmless material for human body as well as significantly rigid. This system has to be suitably rigid as well as manually bended in orthopedic surgery operations. The Interlocking nail system is a kind of nail implanted inside fractured human bones. The shapes of these systems have to be suitably designed in order to endure various loads as well as avoid any damages. If various shaped prototypes would be fabricated and tested to design the optimal shapes, optimal shapes could be obtained but very long time and expensive costs must be required. In this paper finite element method was applied into these systems. Under various boundary conditions a series of structural analysis was conducted by using ANSYS. Finally important shape factors could be determined on the basis of the analysis results.