• 제목/요약/키워드: plate and shell

검색결과 420건 처리시간 0.024초

Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구 (Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger)

  • 서무교;박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • 제8권2호
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

공작기계 절삭유 냉각용 오일쿨러 설계 자동화 (Oil Cooler Design Automation on the Cooling of Machine Tool Cutting Oil)

  • 권혁홍
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.89-99
    • /
    • 1999
  • The automatic design of shell & tube type oil cooler can be used in real industrial environments. Since the automatic design system is intended to be used in small companies, it is designed to be operated well under environments of CAD package in the personal computer. It has adopted GUI in design system, and has employed DCl language. Design parameters to be considered in the design stage of shell and tube type oil cooler are type of oil cooler, outer diameter, thickness, length of tube, tube arrangement, tube pitch, flow rate, inlet and outlet temperature, physical properties, premissive pressure loss on both sides, type of baffle plate, baffle plate cutting ratio, clearance between baffle plate outer diameter and shell inner diameter and clearance between baffle plate holes. As a result, the automatic design system of shell & tube type oil cooler is constructed by the environment of CAD software using LISP. We have built database of design data for various kinds of shell & tube type oil coolers. The automatic design system have been assessed and compared with existing specification of design. Good agreement with Handbook of heat exchanger and design dta of real industrial environments has been found.

  • PDF

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • 손영석;신지영
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation

  • Guenfoud, Hamza;Himeur, Mohamed;Ziou, Hassina;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.385-398
    • /
    • 2018
  • In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane element and a bending element, both based on the strain-based formulation. It is known that $C^{\circ}$ plane membrane elements provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the analytic integration. The shell element result of this combination is robust, competitive and efficient.

내부판 구조물이 결합된 강 및 평직 복합재료 원통셸의 구조진동 특성 연구 (A Study on the Vibration Characteristics of Steel and Plain Weave Composite Cylindrical Shells Combined with Internal Plate Structures)

  • 이영신;최명환
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.149-162
    • /
    • 1999
  • A method for the analysis of free vibrations of steel and plain weave composite cylindrical shells with a longitudinal, interior rectangular plate is developed by using the receptance method. This method is based on the ratio of a deflection (or slope) response to a harmonic force(or moment) at the joint. In this study, after getting the free vibration characteristics of the simply supported plate and shell, the frequency equation of the combined system is obtained by considering the continuity condition at the joint between the plate and the shell. The numerical results are compared with published results and experiment results in order to show the validate of the formulation, and shown that the analytical results agreed with those from other methods. The effects of the location and the thickness of the plate on the natural frequencies are also investigated.

  • PDF

선체 곡판의 롤 굽힘 공정 변수 결정을 위한 가공 형상의 최적 근사 알고리즘 (An Algorithm on Determination of Process Parameters for Roller Bending of Curved Shell Plates)

  • 유철호;이장현;윤종성
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.517-525
    • /
    • 2007
  • This paper presents how to approximate an optimal shape of roll bending process in the fabrication of a curved shell plate. The roll bending process usually makes the cylindrical or conic shape from an initial flat plate. It means that the final shape is developable or its surface representation has zero Gaussian curvature. The fabrication shape is important in order to find process parameters of roil bending. An optimal concept is used to determine the developable fabrication shape which is in the closest proximity to the design surface or the given shell plate and is subject to developability. The results and the efficiency of this algorithm are evaluated by applying to some shell plates. Furthermore, the fabrication shape will be fundamental information for other process parameters of roll bending such as the vertical displacement of the center roller and the rolling directions.

판형쉘열교환기 기본설계를 위한 경향성 분석 (Trend Analysis for Basic Design of a Plate and Shell Heat Exchanger)

  • 최동현;장윤석;강선예
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.69-76
    • /
    • 2022
  • In order to prepare for a future nuclear market, research for developing floating small modular reactor has been initiated with the aim of differentiating it from large nuclear power plants such as distributed power, heat supply to remote communities and sea water desalination. Depending on the characteristics of the small modular reactor, it is necessary to design a plate and shell heat exchanger that can be manufactured smaller than the U-tube recirculation method. In this study, 12 cases are selected by changing the diameter of the heat plate, the thickness of the device body and the size of the stiffener. Finite element analysis is performed by setting the stress classification lines for the point at which deformation is expected under external pressure conditions for these analysis cases. For the basic design of the plate and shell heat exchanger, the optimal conditions are derived by analyzing the tendency of stress change in the device body and stiffener.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

A field-consistency approach to plate elements

  • Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.853-865
    • /
    • 1997
  • The design of robust plate and shell elements has been a very challenging area for several decades. The main difficulty has been the shear locking phenomenon in plate elements and the shear and membrane locking phenomena together in the shell elements. Among the various artifices or devices which are used to develop elements free of these problems is the field-consistency approach. In this paper this approach is reviewed, It turns out that not only Mindlin type elements but also elements based on higher-order theories could be developed using the technique.