• Title/Summary/Keyword: plastics

Search Result 1,285, Processing Time 0.032 seconds

pH Effects of Electroless Ni Plating on ABS Plastics

  • Song, T.H.;Lee, J.K.;Ryoo, K.K.;Lee, Y.B.
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-29
    • /
    • 2004
  • Metal plated plastics are becoming more prevalent in materials of communication parts. A new technique MmSH is a process of injecting plastics to produce innovated physical properties compared to the conventional injection process. This study involves two ways of coating plastics Ni by electroless plating and varying bath and plasma treatment for improved adhesion strength between plating layer and surface. MmSH injection processed ASS with plasma treated after neutralization showed a superior adhesion force and a gloss and rate of deposition when it was in pH 7.5. On the other hand, conventional injection processed ASS was in pH 6.5.

Injection of Waste Plastics into the Blast Furnace and Its Effect on Furnace Conditions

  • Heo, Nam-Hwan;Baek, Chan-Yeong;Yim, Chang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.755-758
    • /
    • 2001
  • Most of the waste plastics are incinerated and landfilled now, leading to much environmental problems. The technology of injection into the blast furnace was developed as a useful recycling method of waste plastics, and applied to the actual operation in several ironmaking companies. We carried out the test operation to inject continuously the two kinds of waste plastics through four tuyeres of the Foundry blast furnace in POSCO by 130 ton of total amount. From this test operation, we analyzed the coke replacement ratio, the permeability, the heat load and other changes of furnace conditions with the injection of waste plastics into the blast furnace. Some trials based upon the theoretical approaches were applied to examine the efficiencies of blast furnace.

  • PDF

The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States (결정성 수지의 발포특성)

  • Lee, Bo-Hyoung;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

Bio Plastics standardization and Eco Label System Trend in Domestic and Foreign Country (국내외 바이오 플라스틱 표준화 및 식별표시 제도 동향)

  • Yu, Yeong-Seon
    • The monthly packaging world
    • /
    • s.251
    • /
    • pp.51-63
    • /
    • 2014
  • 바이오 플라스틱, 에코패키징, 인체 무해성 등과 관련하여 국내외적으로 다양한 규격 및 시험방법이 있다. 바이오 플라스틱(Bio plastics)은 최근 생분해 플라스틱(Biodegradable plastics), 산화생분해 플라스틱(Oxo biodegradable plastics), 바이오 베이스 플라스틱(Bio based plastics)의 3가지로 나뉘어지고 있는 추세이다. 생분해 플라스틱 규격기준은 국제규격인 ISO 14855를 기준으로 국가별로 자국내 규격기준이 제정되어 있고, 이에 따른 인증마크를 시행하고 있다. 최근에 아랍에미레이트(UAE)에서 국제 환경규제를 전면 시행하면서 부각되고 있는 산화생분해 플라스틱은 미국의 ASTM D 6954:2004, ISO 14855 등의 기준을 토대로 제정한 UAE S 5009:2009에 의해 시행되고 있다. 또한 산업화가 급속하게 추진되고 있는 바이오 베이스 플라스틱 관련한 규격 기준은 미국 ASTM D 6866을 기준으로 시행되고 있고, 일부 국가는 자국내 규격기준을 제정하여 인증라벨을 부여하고 있다. 현재 바이오 베이스 플라스틱 인증라벨은 2002년 미국을 시작으로 2006년 일본, 2009년 벨기에, 2010년 독일, 2011년 한국에서 시행되고 있다. 그 외에도 GR마크, 녹색 인증, 단체 규격 인증, 업계 자체 규격 기준 등이 다양하게 시행되고 있다.

  • PDF

Study of micro-plastics separation from sea water with electro-magnetic force

  • Nomura, Naoki;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.10-13
    • /
    • 2021
  • The method of removing micro-plastics from sea water has been developed using electro-magnetic force. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. The Lorentz force was generated in simulated sea water and its reaction force was applied to the micro-plastic to control their motion. Lorentz force was generated downward and the reaction force to the plastics was upward. The plastic used in the experiment was polystyrene with a diameter of 6 mm, and the density was 1.07 g/cm3. The polystyrene sphere levitated at the current density of 0.83 A/cm2 and the external field of 0.87T. The particle trajectory calculation was also made to design separation system using superconducting magnet.

Waste Management in the Era of Sustainable Development Goals : The EU's Plastics Strategy (SDGs시대의 폐기물관리 : EU의 플라스틱 전략)

  • Park, Sang-Woo
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.683-691
    • /
    • 2018
  • The plastic strategy adopted by the EU in January 2018 was established to implement circular economic policies and the Sustainable Development Goals(SDGs) of the United Nations. The strategy includes the vision and implementation measures to achieve, which are primarily measures to improve recycling and increase demand for recycled plastics. The representative measures include the design that considers recycling possibilities, reinforcement of demand for recycled plastics, suppression of occurrence, and response to micro-plastics. The policies to implement these measures include legislative restrictions and economic measures (EPR, GPP). It is especially desirable that the policies are applied differently depending on the plastic product. The Korean government has established comprehensive measures for all stages from production to recycling, but those measures are not comprehensive compared to the EU's strategy. The reason is that the refusal of waste collection makes the Korean government establish the approach from the aspect of waste management instead of the implementation of a circular economy or SDGs like the EU. The countermeasures are aimed at achieving a 50% reduction in waste generation amount and a 70% recycling rate. It is considered that the possibility of achieving the goal will increase by examining the measures and policy means in the EU's plastics strategy.

Separation of micro-plastics from sea water using electromagnetic archimedes force

  • N. Nomura;F. Mishima;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.18-21
    • /
    • 2023
  • Pollution of the environment by micro-plastics is now a worldwide problem. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. In this paper, we aimed to experimentally demonstrate that micro-plastics in seawater can be continuously separated by electromagnetic Archimedes force. Using polyethylene particles of 3 mm in diameter as the separation target, a flow channel was fabricated and separation conditions were investigated by particle trajectory calculations for separation experiments. Based on the calculation results, a solenoid-type superconducting magnet was used as a source of magnetic field to conduct separation experiments of micro-plastics in seawater. Although a high separation rate was assumed in the simulation results, the experimental results did not show any significant improvement in the separation rate due to the electromagnetic Archimedes force. It was found that the gas generated by the electrolytic reaction may have inhibited the migration of the particles.

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

Design of Automatic Classification System of Black Plastics Based on Support Vector Machine Using Raman Spectroscopy (라만분광법을 이용한 SVM 기반 흑색 플라스틱 자동 분류 시스템의 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.