• 제목/요약/키워드: plastic strain range

검색결과 189건 처리시간 0.023초

나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상 (Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation)

  • 이정민;이찬주;김병민
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

GND 효과에 의한 소성 구배의 다결정 고체 거동에 대한 영향 (Effect of Plastic Gradient from GND on the Behavior of Polycrystalline Solids)

  • 정상엽;한동석
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.185-191
    • /
    • 2011
  • 재료의 마이크로 스케일 해석에서 결정의 geometrically necessary dislocation(GND) 효과에 의한 소성 구배(plastic gradient)의 고려는 재료의 소성 거동에 큰 영향을 미칠 수 있다. 본 연구에서는 먼 거리(long range) 전위(dislocation)의 영향(또는 GND 효과)을 고려하여 소성 구배의 영향을 받는 다결정 고체(polycrystalline solids)의 거동을 유한요소해석을 이용하여 살펴보았다. 탄성(elastic)과 소성(plastic) 변형에 추가적으로 먼 거리 변형률(long range strain)을 고려한 항(term)이 포함된 변형 구배(deformation gradient)의 multiplicative decomposition 모델을 기반으로 하여 소성 구배 효과를 해석 모델에 포함하였다. 먼 거리 변형률에 의한 영향을 살펴보기 위해 구배 경화 계수(gradient hardness coefficient)와 먼거리 변형률 길이에 대한 재료 변수(parameter)가 사용되었다. 각각의 계수들이 다결정 고체의 거동에 미치는 영향을 확인하기 위해 두 변수의 적용에 따른 다결정 고체의 거동을 분석하였다. 단결정 및 다결정 재료의 GND 효과에 의한 소성 구배를 고려해서, 고려하지 않은 경우와 비교하여 발생하는 경화(hardening)의 차이를 분석함으로서 GND의 다결정 고체 거동의 영향을 확인하였다.

소성역체결 볼트의 체결력과 마찰계수에 관한 연구 (Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range)

  • 손승요;신근하
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

Relationship between hardness and plastically deformed structural steel elements

  • Nashid, Hassan;Clifton, Charles;Ferguson, George;Hodgson, Micheal;Seal, Chris;Choi, Jay-Hyouk
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.619-637
    • /
    • 2015
  • A field based non-destructive hardness method is being developed to determine plastic strain in steel elements subjected to seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: what was the extent of plastic deformation and what effect does that have on post-earthquake steel properties? A non-destructive hardness test method is being used to determine a relationship between hardness and plastic strain in active link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch are being analysed in the field and laboratory. Test results to date show clear evidence that this method is able to give a good relationship between plastic strain and demand. This paper presents significant findings from this project to investigate the relationship between hardness and plastic strain that warrant publication prior to the completion of the project. Principal of these is the discovery that hot rolled steel beams carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

온간 단조기에서의 소성변형과 결정입자 변화와의 관계 (Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 이해영;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃

  • Gurovich, B.A.;Frolov, A.S.;Fedotov, I.V.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1213-1221
    • /
    • 2020
  • Chromium-nickel alloy 42XNM (XHM-1, Bochvalloy) is considered as a promising material for future generations of nuclear reactors, primarily as a material for the fuel elements shells in the development of accident tolerant fuel. However, as with most nickel-based alloys, 42ХNМ is characterized by a sharp decrease in plastic properties in the temperature range of (500-900)℃. This effect is enhanced by neutron irradiation. Preliminary tests of ring samples of 42XNM alloy (after irradiation as a part of the VVER-1000 control system) in the temperature range of ductility failure showed that the standard technique for processing tensile diagrams does not allow to evaluate the plastic properties correctly at low strains. Therefore, in this work, the alternative method for testing ring samples from materials with low plastic characteristics was developed. It was shown that the minimum value of the permanent strain of the irradiated 42XNM alloy in the temperature range of (500-1100)℃, determined by the alternative method, was ~1.6% at 750 ℃.