• Title/Summary/Keyword: plastic rotation

Search Result 352, Processing Time 0.038 seconds

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Innovation in the planning of V-Y rotation advancement flaps: A template for flap design

  • Dolen, Utku Can;Kocer, Ugur
    • Archives of Plastic Surgery
    • /
    • v.45 no.1
    • /
    • pp.85-88
    • /
    • 2018
  • Local flaps exhibit excellent color matching that no other type of flap can compete with. Moreover, surgery using a local flap is easier and faster than surgery using a distant or free flap. However, local flaps can be much more difficult to design. We designed 2 templates to plan a V-Y rotation advancement flap. The template for a unilateral V-Y rotation advancement flap was used on the face (n=5), anterior tibia (n=1), posterior axilla (n=1), ischium (n=1), and trochanter (n=2). The template for a bilateral flap was used on the sacrum (n=8), arm (n=1), and anterior tibia (n=1). The causes of the defects were meningocele (n=3), a decubitus ulcer (n=5), pilonidal sinus (n=3), and skin tumor excision (n=10). The meningocele patients were younger than 8 days. The mean age of the adult patients was 50.4 years (range, 19-80 years). All the donor areas of the flaps were closed primarily. None of the patients experienced wound dehiscence or partial/total flap necrosis. The templates guided surgeons regarding the length and the placement of the incision for a V-Y rotation advancement flap according to the size of the wound. In addition, they could be used for the training of residents.

The Versatility of Cheek Rotation Flaps

  • Kim, Kyung Pil;Sim, Ho Seup;Choi, Jun Ho;Lee, Sam Yong;Lee, Do Hun;Kim, Seong Hwan;Kim, Hong Min;Hwang, Jae Ha;Kim, Kwang Seog
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.4
    • /
    • pp.190-197
    • /
    • 2016
  • Background: The cheek rotation flap has sufficient blood flow and large flap size and it is also flexible and easy to manipulate. It has been used for reconstruction of defects on cheek, lower eyelid, or medial and lateral canthus. For the large defects on central nose, paramedian forehead flap has been used, but patients were reluctant despite the remaining same skin tone on damaged area because of remaining scars on forehead. However, the cheek flap is cosmetically superior as it uses the adjacent large flap. Thus, the study aims to demonstrate its versatility with clinical practices. Methods: This is retrospective case study on 38 patients who removed facial masses and reconstructed by the cheek rotation flap from 2008 to 2015. It consists of defects on cheek (16), lower eyelid (12), nose (3), medial canthus (3), lateral canthus (2), and preauricle (2). Buccal mucosa was used for the reconstruction of eyelid conjunctiva, and skin graft was processed for nasal mucosa reconstruction. Results: The average defect size was $6.4cm^2$, and the average flap size was $47.3cm^2$. Every flap recovered without complications such as abnormal slant, entropion or ectropion in lower eyelid, but revision surgery required in three cases of nasal side wall reconstruction due to the occurrence of dog ear on nasolabial sulcus. Conclusion: The cheek rotation flap can be applicable instead of paramedian forehead flap for the large nasal sidewall defect reconstruction as well as former medial and lateral canthal defect reconstruction.

The Strength Analysis of Railroad Continuous Bridge Considering Plastic Deformation (소성변형을 고려한 철도연속교의 강도해석)

  • Chung Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.556-561
    • /
    • 2005
  • The steel shows plastic deformation after the yield point exceeds. The plastic deformation due to overloads occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support and the permanence deformation at the interior support remains after loads apply. Because local yielding causes the positive moment at the interior support, it is called 'auto-moment'. Auto-moment redistributes the elastic moment. Because of redistribution, auto-moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the plastic rotation is evaluated using the moment-rotation curve proposed by Schalling and Beam-line method. Moreover, auto-moment is derived from the experiment curve.

  • PDF

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

Effect of Double-Cropping Systems on Nematode Population in Plastic Film House Soils of Oriental Melon Cultivation (이모작에 따른 참외 재배 비닐하우스 토양의 선충밀도 변화)

  • Byeon, Il-Su;Suh, Sun-Young;Lee, Yong-Se;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • BACKGROUND: Crop rotation is often used as a solution to eradicate nematodes in soils used in plastic film houses for long-term cultivation of oriental melon. However, it is not clear if the double-cropping is effective in reducing nematode populations in soils. METHODS AND RESULTS: Nematode population in plastic film house soil was measured during oriental melon cultivation from April to July in short term crop rotation systems of oriental melon. Double-cropping of chinese cabbage in open-field for 3-4 months following oriental melon in plastic film houses could not prevent the build-up of high population density of nematodes. However, double-cropping of dropwort in flooded soil for 3-4 months following oriental melon in plastic film houses could effectively reduce the nematode population during the successive year of oriental melon cultivation. The reduced nematode population in soils of oriental melon-dropwort double-cropping system was continued until the mid season of progressive year oriental melon cultivation. Application of nematicide to soil before growing oriental melon in the oriental melon-dropwort double-cropping was very effective in preventing the build-up of high population density of nematode in plastic film house soils. CONCLUSION: Short-term introduction of crop rotation was not effective in suppression of high population density of nematodes in plastic film house soils of long-term year-to-year production of oriental melon. For securing the soil productivity and sustainability of plastic film house, various physical, chemical, and agronomic practices should be properly combined together.

An Experimental Study on the Flexural Stiffness and Plastic Hinge Ratation Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강성 및 소성힌지의 회전능력에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.93-100
    • /
    • 1998
  • This paper presents a study on the flexural stiffness, plastic hinge length and plastic hinge rotation capacity of reinforced high performance concrete beams. 15 beams with different strength of concrete, reinforcement ratio and the pattern of loadings were tested. From the test results of reinforced normal strength concrete beams and reinforced high performance concrete beams with the concrete which has cylinder compressive strength of 700kg/${cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. It is found that an extreme fiber concrete compressive strain of ${\varepsilon}_{cu}=0.0047$ may be used in ultimate curvature computations of reinforced high performance concrete beams. An empirical equation is proposed to estimate the effective moment of inertia. length and rotation capacity of plastic hinge of simply supported reinforced high performance concrete beams. The estimated deflections using this equation agree well with the experimental values.

Forehead reconstruction using modified double-opposing rotation-advancement flaps for severe skin necrosis after filler injection

  • Kim, Jinwoo;Hwang, Woosuk
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.1
    • /
    • pp.64-67
    • /
    • 2018
  • Varying degrees of complications can occur after hyaluronic acid filler injections. Tissue necrosis due to interruption of the vascular supply is an early complication that can be severe. If the site of tissue necrosis due to the filler injection is the forehead, successfully reconstructing the region without distorting the key landmarks is challenging. We describe the case of a 50-year-old man who experienced widespread forehead skin necrosis after hyaluronic acid filler injection in the glabellar area. We successfully covered the forehead area with a $3{\times}4-cm^2$ midline necrotic tissue using the modified double-opposing rotation-advancement flap method. Although modified double-opposing rotation-advancement flap closure has the disadvantage of leaving a longer scar compared to conventional double-opposing rotation-advancement flap closure, the additional incision line made along the superior border of the eyebrow aids in camouflaging the scar and decreases eyebrow distortion. Therefore, it is believed that the modified double-opposing rotation-advancement flap technique is an excellent tool for providing adequate soft tissue coverage and minimal free margin distortion when reconstructing widespread skin necrosis in the central mid-lower forehead that can occur after filler injection in the glabellar area.

Effective Lateral Canthal Lengthening with Triangular Rotation Flap

  • Kim, Min Soo
    • Archives of Plastic Surgery
    • /
    • v.43 no.4
    • /
    • pp.311-315
    • /
    • 2016
  • In Korea, lateral canthoplasty, along with medial epicanthoplasty, has become popular over the past years to widen the horizontal length of the palpebral fissure. However, the effect of the surgery differs greatly depending on the shape and structure of the eyes. If over-widened, complications such as eversion, scarring, and conjunctival exposure may occur. Thus, the author of this study suggests a more effective and safe method for lateral canthal lengthening that causes minimal complications. A total of 236 patients underwent lateral canthoplasty between July 2007 and December 2015. For each patient, a triangular flap 4-5 mm away from the lateral canthus was elevated and rotated 45 degrees laterally while the continuity of the lower eyelid gray line was maintained. A new lateral canthus was created by fixating the rotation flap to the lateral orbital rim with minimal skin trimming and tension-free sutures, preventing relapse and maintaining a triangular shape. In more than 95% of cases, effective and satisfactory extension was achieved. On average, a 3 mm extension of the lateral canthus was achieved. There were minor complications such as wound dehiscence, webbing, and scarring, which were easily corrected. The author not only extended the lateral canthus 3-4 mm laterally but also maintained the continuity of the gray line on the lower lid as a more natural-looking triangular shape, while minimizing complications such as webbing and conjunctival exposure.