• Title/Summary/Keyword: plastic recycling

Search Result 340, Processing Time 0.024 seconds

Liquid-phase Thermal Degradation Properties of Waste Plastic Film (폐플라스틱 필름의 액상 열분해 특성에 관한 연구)

  • Hwang, T.S.;Kim, Y.S.;Kang, T.W.;Hwang, E.H.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.116-121
    • /
    • 2003
  • In this study, the thermal degradation process has been investigated at various reaction temperature$(350{\sim}400^{\circ}C)$ and times$(30{\sim}120\;min)$ in order to recycle waste plastic films as solid state wax. Waste plastic films were easily melted by adding a small amount of waxes. The effects of wax addition and nitrogen flow rate on their thermal degradation properties were investigated. FT-IR, GPC and viscometer were used to analyze properties of the solid wax including the structure, molicular weight distribution and melt viscosity. The average molecular weight of solid wax was decreased with increasing the reaction time, temperature and amount of wax added, Also, the viscosity of solid wax decreased with increasing the stirring speed at a constant reaction temperature and time, and its viscosity got close to zero above $390^{\circ}C$.

  • PDF

The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning (Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

Development of Triboelectrostatic Separation Technique for Material Separation of EVA & PET Mixture Plastic Wastes (EVA와 PET 혼합(混合) 폐플라스틱의 재질분리(材質分離)를 위한 마찰하전형(摩擦荷電形) 정전선별(靜電選別) 기술개발(技術開發))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • A research on material separation of EVA and PET mixture plastic waste using a triboelectrostatic separator has been carried out. It was found that PP was the best charging material to give the highest charge on the surface of EVA and PET mixture plastics with an opposite polarity. Therefore, a charger of pipe line type using PP material was manufactured for separation of EVA and PET mixture plastic waste. At optimum test conditions that used PP cyclone charger developed in this study, we could separate out PET with a glade of 98.7% and a recovery of 89.7%.

Methods of Separating Used Plastics for Recycling (폐플라스틱의 선별기술)

  • 윤여환
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Plastics waste constitutes approximately 23% by volume of the municipal solid waste(MSW) generated in the U.S. each year, and have slow rate of degradation in the environment. Therefore, there is a great deal of public pressure to recycle plastics, and more than 100 million people participate in the curbside recycling programs. Despite the high level of public interest, only 3.5% of the plastic are recycled, which is substantially lower than the recycle rates of other materials such as paper fibers, glass, and iron. Although a large part of the reason is due to the low price of virgin polymers, which in turn is due to the low price of oil, it is possible to make the plastics recycling as a profitable business by developing advanced technologies. In this communication, various methods of separating pplastics from metals and from each other are discussed.

  • PDF

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process (풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究))

  • Choi, Woo-Zin;Yoo, Jae-Myung
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • The mixed plastic waste generated from households after hand-picking and/or mechanical sorting processes amounts to 1,750,000 ton in 2006, and most of these waste are finally end up with landfill and/or incineration due to the lacks of separation technologies and economical reasons. The mixed plastic wastes can not be used as raw materials for chemical and/or thermal recycling processes because of their high content of PVC(upto 4.0 wt.%). In the present research, gravity separation system has been developed to remove PVC from the mixed plastic waste and to recover the PO-type plastics. This system mainly consists of air classification, magnetic separation, one-step crushing, feeding system at fixed rate and wet-type gravity separation system. The gravity system based on centrifugal separation has been developed at capacity of 0.5 ton/h and it consists of mixing, precleaning, separation, dewatering, recovery system and wastewater treatment system, etc. The main objective of this process is to achieve high separation efficiency of polyolefins with less than 0.3 wt.% PVC content and less than 10% moisture content in the final products. In addition, a crushing unit of with 8 rotor system is also developed to improve the crushing efficiency of soft-type plastics. The system with a capacity of 1.0 ton/h is developed and operational results are presented.

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.

Development of Material Separation Process for Recycling Waste Coffee Capsules (폐 커피 캡슐의 재활용을 위한 재질분리 공정 개발)

  • Baek, Sang-Ho;Han, Yosep;Kim, Seongmin;Davaadorj, Tsogchuluun;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • This study evaluated the recyclability of waste plastics in used coffee capsules disposed of as municipal waste. For recycling, a new material separation process was developed to remove the coffee grounds through primary crushing, washing, sieving, and secondary crushing, followed by corona discharge electrostatic separation. Furthermore, for the under 10 mm size fraction samples, the aluminum removal and the plastic recovery were 95.4% and 98.3%, respectively, under optimal conditions. In addition, for the 15 mm fraction samples, the aluminum removal and the plastic recovery were 91.3% and 97.2%, respectively. To evaluate the recyclability of the separated waste plastics, the samples were pelleted, and their material properties were analyzed. No hazardous substances were detected, and the results were similar to those for homo-PP. Therefore, it was confirmed tha t sufficient functiona lity existed a s recycled PP. However, owing to the da rk color of the pellets, limited applications to black or dark products are expected.