• 제목/요약/키워드: plastic ratio

검색결과 1,631건 처리시간 0.027초

기둥-보 연결 강구조물의 소성회전각에 의한 피로곡선 연구 (A Study on the Fatigue Line with Plastic Rotaional Angle for Steel Structure of the Beam-to-Column Joints)

  • 공병승
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.221-232
    • /
    • 1998
  • 본 연구에서는 지진 등과 같이 소성변형의 범위가 큰 Low-Cycle-Fatigue 범주에서 구조물의 응력변동을 중심으로 사용되는 기존의 피로곡선인 S-N선도 보다 실질적으로 간단하게 측정하여 분석할 수 있는 소성회전각에 의한 피로곡선을 제시하였다. 이는 소성힌지가 생성되는 곳의 소성변형율과 구조물의 소성회전각이 서로 정비례를 이루는 상관관계임을 입증하여, 실험을 통하여 밝혀진 소성변형율의 피로곡선의 기울기와 소성회전각의 기울기가 서로 같은 값을 가짐을 보여 주었다. 이론은 Manson과 Coffin의 변형을 피로곡선을 도입하였고, 실험은 ECCS 주관하에 실시하였으며, 수치해석을 통하여 소성힌지 부위의 위치와 정확한 소성변형율을 산정할 수 있었다.

  • PDF

해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과 (Effect of Geometry Variation on Plastic Collapse of Marine Pipeline)

  • 백종현;김우식
    • 한국가스학회지
    • /
    • 제14권4호
    • /
    • pp.45-50
    • /
    • 2010
  • 해저배관의 안전성 검토를 위하여 수압에 의한 소성붕괴 저항성을 평가하였다. 본 연구에서는 해저배관에 부가되는 주하중을 수압으로 설정하여 배관의 직경대 두께비와 ovality 변화가 배관의 소성붕괴 변화에 미치는 영향을 유한요소해석을 통하여 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰으며, 동일 ovality에서 local ovality를 갖는 배관은 global ovality 보다 더 깊은 붕괴 깊이를 나타내었으며, 소성붕괴 발생 깊이는 직경대 두께비의 증가 또는 ovality 증가에 따라 감소하였다.

미소 원주의 사출 성형 실험 (Injection Molding Experiments for Small Diameter Column)

  • 제태진;이응숙;김재구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

컵-컵형 축대칭 복합압출에 관한 실험적연구 (An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion)

  • 김영득;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

A Study on the Genetic Inheritance of Ankyloglossia Based on Pedigree Analysis

  • Han, Soo-Hyung;Kim, Min-Cheol;Choi, Yun-Seok;Lim, Jin-Soo;Han, Ki-Taik
    • Archives of Plastic Surgery
    • /
    • 제39권4호
    • /
    • pp.329-332
    • /
    • 2012
  • Background Ankyloglossia or tongue-tie is a congenital anomaly characterized by an abnormally short lingual frenum. Its prevalence in the newborn population is approximately 4%. Its mode of inheritance has been studied in some articles, but no conclusion has been established. Also, no relevant report has been published in Korea. This study was conducted to elucidate the genetic inheritance of ankyloglossia via pedigree analysis. Methods In this study, 149 patients with no other congenital anomaly who underwent frenuloplasty between March 2001 and March 2010 were studied. Pedigrees were made via pre- or post-operative history taking, and patients with uncertain histories were excluded. In the patient group that showed a hereditary nature, the male-to-female ratio, inheritance rate, and pattern of inheritance were investigated. Results One hundred (67.11%) of the patients were male and 49 (32.89%) were female (male-female ratio=2.04:1). Ninety-one (61.07%) patients reported no other relative with ankyloglossia, and 58 (38.93%) patients had a relative with this disease. The inheritance rate was 20.69% in the 58 cases with a hereditary nature. In the group with no family history of ankyloglossia, the male-female ratio was 3.79:1, which significantly differed from that of the group with a family history of ankyloglossia. X-chromosome mediated inheritance and variation in the gene expression was revealed in the pedigree drawn for the groups with hereditary ankyloglossia. Conclusions Ankyloglossia has a significant hereditary nature. Our data suggest X-linked inheritance. This study with 149 patients, the first in Korea, showed X-linked inheritance in patients with a sole anomaly.

소결분말금속의 항복함수 (A Yield Function for Sintered Porous Metals)

  • 박종진
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1115-1122
    • /
    • 1993
  • Several yield criteria for porous materials are compared with each other, defining the apparent yield stress as the yield stress of the porous material in simple compression. It was found that the plastic Poisson's ratio is the parameter needed to define the yield criterion, rather than the relative density. The plastic Poisson's ratio is regarded as a material characteristic that is obtained from a simple compression test. A new form of yield criterion was suggested, and it was applied to hydrostatic compression as well as uniaxial strain compression of sintered Al-2024 powder. The crossover point in the mean stress vs volume change curves of the processes was predicted. It is presented that the flow stress of the fully densed material can be obtained from that of the porous material using relations obtained from the yield criterion.

알루미늄 5182/폴리프로필렌/알루미늄 5182 샌드위치 판재의 소성변형비 및 평면이방성 (Plastic Strain Ratio and Planar Anisotropy of AA5182/Polypropylene/AA5182 Sandwich Sheets)

  • 김기주;정효태
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.365-373
    • /
    • 2004
  • The sheet formability of single AA5182 sheets and sandwich sheets comprising of AA5182/polypropylene/AA5182 (AA/PP/AA) was studied. Rolling without lubrication and subsequent recrystallization annealing led to the formation of favorable {111}//ND fiber textures in AA5182 sheets, which provided a higher plastic strain ratio of $R_m=1.5$. $R_m$ value of 1.58 was obtained in the AA/PP/Ah sandwich sheet sample. Furthermore, a proper combination of the sample direction of the upper and lower skin sheet gave rise to an optimization of the sheet formability of the sandwich sheets.

알루미늄 합금판재의 집합조직 제어 (Texture Control in Aluminum Alloy Sheets)

  • 김근환;강형구;최창희;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.198-201
    • /
    • 1997
  • Aluminum alloy sheets are considered as one of the high potential substitutes for steel sheets considering weight reduction of automobiles. However, aluminum alloy sheets have drawbacks in higher prices and inferior formability compared to steel sheets. In order to achieve good deep drawability, it is imperative to obtain well developed {111} texture which gives rise to higher plastic strain ratio. It is difficult to obtain this texture from conventional rolling and annealing processes. Therefore, an unconventional rolling process which enhances shear deformation has been experimentally studied to obtain the well developed {111} texture, which in turn gives rise to a substantial increase in plastic strain ratio.

  • PDF

순수 티타늄 판재의 피로균열 전파거동에 관한 연구 (A Study on Fatigue Crack Propagation Behavior with Pure-Ti Plate)

  • 오세욱;김태형;김득진;임만배
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.92-100
    • /
    • 1995
  • The effect of different anisotropy and stress ratio on fatigue crack propagation behavior was investigated under various stress ratio(R=-0.4, -0.2, 0.2, 0.2, 0.4) using pure titanium sheet used in aerospace, chemical and food industry. The rack closure behavior under constant load amplitude fatigue crack propagation test was examined. Fatigue crack propagation rate da/dN was estimated in terms of effective stress intensity factor range, $\Delta$K$_{eff}$, regardless of various stress ratio but was influenced by anisotropy. Also, it was found that the effect of anisotropy was considerably decreased but still not negligible when he da/dN was evaluated by a conventional parameter, $\Delta$$K_{eff}$/E and when the modified da/dN.$\sqrt{\varepsilon}_f$ was evaluated by $\Delta$$K_{eff}$/E. On the other hand, da/dN could be evaluated uniquely by effective new parameter, $\Delta$K$_{eff}$/$sigma_{ys}$, regardless of anisotropy, as int he following equation da/dN=C''[\frac{{\Delta}K_{eff}}{{\sigma}_{ys}}]^{n''}. And effective stress intensity factor range ratio, U was estimated by the following equation with respect to the ratio of reversed plastic zone size, $\Delta r_{p}$ to monotonic plastic zone size, $r_p$ regardless of stress ratio and anisotropy. U=-4.45$(\Delta r_{p}/r_{p})^{2}$+4.1$(\Delta r_{p}/r_{p})$+0.245_{p})$+0.245

  • PDF

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.