• Title/Summary/Keyword: plastic ratio

Search Result 1,631, Processing Time 0.026 seconds

The Evvalution of Different Factors Influencing the Quality of Silage (Silago 품질에 영향을 미치는 각종요인의 평가)

  • 한정대;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.1 no.1
    • /
    • pp.18-28
    • /
    • 1978
  • To study about the effect of harvested stage and physical treatment such as wilting or chopping of plant material on the quality of silage, Italian ryegrass(Lolium multiflorum) harvested at pre-headed or heading stage and Seombadi(Dystaenia takesimana Nakai) harvested at pre-flowering stage, were used for the purpose. The materials were treated in four different ways which were a) non-treated, b) one day-wilted, c) chopped with 1 to 2cm length and d) wilted and chopped, and those were ensiled in plastic containers and stored at room temperature for three months. After three months of storage, it was investigated and obtained the following results. 1) Having 6.31 of NFE/CP ratio and low content of crude fiber, Seombadi contained more suitable constituents for silage than Italian ryegrass. 2) Under the non-treated or chopped condition, the loss of NFE was higher, and lower with wilted material. 3) Wilting or chopping improved DM digestibility. 4) Compared with Italian ryegrass harvested at pre-headed stage, the storage amount per unit volume of heading stage-Italian ryegrass and Seombadi were higher 8% and 69% respectively, and wilting and/or chopping increased the storage amount 41 to 134%. 5) The majority of weight loss during storage was observed at 1st week after ensiling, it continued slightly until 4th week. The highest loss in 8th week were 3.76% of nontreated material. 6) One day wilting increased DM content of silage 23 to 131%. Wilting and chopping increased pH and lactic acid improved the quality considerably. 7) The correlation between $NH_3$ and butyric acid, and between lactic acid and DM were r=0.782**, r=0.634** respectively. The regression equation were y=12.853X+4.908 (X=butyric acid), y=0.016X+1.309(X=DM content), respectively. 8. The above results indicate that it is necessary to wilt or chop material to make good quality silage from Italian ryegrass, and such treatment can improve the quality of silage with Seombadi also.

  • PDF

Effects of Capillary Rise Interruption Layer on Salt Accumulation and Kentucky Bluegrass (Poapratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터키블루그래스 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.5-8
    • /
    • 2011
  • This research was conducted to determine the effect of capillary rise interruption layer on the sand based growing media when growing Kentucky bluegrass under soil reclamation and saline water irrigation. Rootzone profile consists of three layers as top soil of 30 cm, 20 cm of capillary interruption layer and 10 cm of reclaimed paddy soil. Rootzone profile was packed in column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5dsm^{-1}$. Kentucky bluegrass was installed by sod and irrigated using $2dSm^{-1}$ saline water(5.7mm $day^{-1}$)in 3days interval. The results showed that the largest accumulation of salt in the spring with ECe of $5.4dSm^{-1}$ and SAR34.0 in rootzone with out capillary rise interruption layer and ECe of $4.6dSm^{-1}$ and SAR8.24 at rootzone using gravel as capillary rise interruption layer material. Kentucky bluegrass grown in growing media with gravel as capillary rise interruption layer resulted in the average visual quality rate of 8.1and clipping dry weight of $24.8gm^{-2}$, while Kentucky bluegrass grown in the growing media with out capillary rise interruption layer showed the visual quality rate of 7.9 and clipping dry weight of $34g.m^{-2}$. Capillary rise interruption layer of gravel and coarses and enhanced the visual quality by 4.1and 4.0%, root length by 50 and 38%, and root dryweight by 35and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the rootzone.

  • PDF

Effect of Various Forms of Floor System on Performance of Meat-type Duck and Environments of Duck House (오리사 바닥 형태가 육용오리의 생산성 및 사육환경에 미치는 영향)

  • Bang, Han-Tae;Kim, Dong-Woon;Hwangbo, Jong;Na, Jae-Cheon;Kang, Hwan-Ku;Kim, Min-Ji;Mushtaq, M.M.H.;Parvin, R.;Choi, Hee-Chul;Lee, Sang-Bae;Kang, Min;Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • This experiment was conducted to investigate the effects of floor type and heating system on performance, housing environment and health status of ducks reared in three types of duck house (OD : Open floor house-Direct heating system, OF : Open floor house-Floor heating system and LD : Loft type house-Direct heating system). In OF treatment, PVC pipes were installed for heating under concrete floor and covered with litter. In LD treatment, plastic mesh was installed 50 cm above the floor so that duck's droppings can pass through it. Each treatment had four replicates of 25 birds (Cherry Valley duck breed) per pen. There were no significant differences in weight gain and feed intake of ducks for 6 weeks among all treatments. However, feed conversion ratio in LD was significantly higher (p<0.05) than that in OF. No differences were found in carcass charac- teristics, with the exception of abdominal fat weight where OF were higher than the others. Concentrations of $CO_2$ and $NH_3$ gas in OD were higher than those of OF and LD at 3, 4 and 5 weeks. Moisture content in litter of OF was lower than that of OD. In contrast, the amount of dust in the air was higher in OF than in OD. The amount of fuel used for 6 weeks in LD was lower about 21% than that in OD. Some of unusual symptoms were observed in open floor house and loft type house, such as lying, spraddle legged, twisted ankle and legs, wounded sole, or etc. No components of leukocyte and erythrocyte of blood were significantly different among all treatments. The results of this experiment showed that OF and LD systems had no positive effects on performance of meat type commercial duck. However, there were some positive effects of certain house type for the improvement of environmental condition in duck house for hygienic production. In the future, more research on the effect of various facilities and systems for duck house is needed.

The Effects of Environment-Friendly Diets on the Growth Performance, Nutrient Digestibility, Fecal Excretion, Nitrogen Excretion and Emission Gases in Manure for Growing Pigs (환경친화적인 사료의 급여가 육성돈의 성장 능력, 영양소 소화율, 분 배설량, 분뇨내 질소배설량 및 악취 가스에 미치는 영향)

  • Yoo, J.S.;Cho, J.H.;Chen, Y.G.;Kim, H.J.;Wang, Q.;Hyun, Y.;Ko, T.G.;Park, C.S.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.491-500
    • /
    • 2007
  • Two experiments were used to determine the effects of environment-friendly diets on growth performance, fecal excretion, nitrogen excretion and emission gases in manure for growing pigs. In experiment 1, ninety six crossed pigs(Landrace×Yorkshire×Duroc) were allocated into four treatments. Treatments were AME(adequate ME diet, 3,265 kcal/kg), LME(lower ME diet, 3,100 kcal/kg), LME 0.05(lower ME diet+α- galactosidase & β-mannanase 0.05%) and LME 0.10(lower ME diet+α-galactosidase & β-mannanase 0.10%). Pigs fed AME diet had lower ADFI(Average Daily Feed Intake) than pigs fed other diets(p<0.05). DM(Dry Matter) digestibility in pigs fed AME and LME 0.10 diets had greater than pigs fed LME diet(p<0.05). Energy digestibility is higher in pigs fed AME and LME 0.10 diets than other treatments(p<0.05). In experiment 2, twenty four crossbred pigs(33.71 kg average BW) were used in a 14-d metabolism experiment. The pigs were housed in individual cages equipped with plastic bed flooring. Treatments were CP(Crude protein) 18% without Bacillus sp., CP 18% diet+Bacillus sp. 0.05%, CP 14% without Bacillus sp. and CP 14% diet+Bacillus sp. 0.05%. Nitrogen intake was higher for CP 18% diets than CP 14% diets(p<0.05). DM, N(Nitrogen) and energy digestibility were affected by probiotics(p<0.05). With the high CP in diets, Energy and N digestibility, urine N percent, urine N excretion and total N excretion were increased significantly compared to low CP in diets(p<0.05). Among the treatments, DM and N digestibilities, feces N excretion, N absorption were decreased significantly(p<0.05), however, feces excretion, feces N, urine N percent, urine N excretion and total N excretion were increased significantly(p<0.05) when pigs fed without probiotics diets compare to pigs fed with probiotics diets. DM and N digestibility, feces excretion, feces N excretion, urine N percent, urine N excretion, total N excretion, N absorption and N adsorption ratio were CP×probiotic interactions in p<0.05. Ammonia(p<0.01) and H2S(p<0.05) in manure were lower in CP 14% diets than CP 18% diets. Also, ammonia and H2S in manure were CP×probiotic interactions in p<0.05. In conclusion, low energy and reduction of CP dietary added enzyme and probiotics improved nutrient digestibility and reduced odors emission in manure for growing pigs.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Influence of NO3-:NH4+ Ratios in Fertilizer Solution on Growth and Yield of Hot Pepper (Capsicum annuum L.) in Pot Cultivation (배지경 포트재배에서 비료용액의 NO3-:NH4+ 비율이 고추의 생장 및 수량에 미치는 영향)

  • Yi, Ho Jin;Choi, Jong Myung;Jang, Sung Wan;Jung, Suk Ki
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • This research was conducted to evaluate the influence of $NO_3{^-}:NH_4{^+}$ ratios in fertilizer solution on the vegetative growth and fruit yield of hot pepper (Capsicum annuum L.) through pot cultivation. The Hoaglad's solution was modified to contain various $NO_3{^-}:NH_4{^+}$ ratios such as 100:0 (A), 73:37 (B), 50:50 (C), 27:73 (D), 0:100 (E), and no nitrogen (F). Plants were transplanted into root substrates and the modified solutions were applied as plant needed in plastic house. There were no statistical significances among the treatments from A through D in the fresh and dry weights, and number of leaves 31 days after transplanting, but elevation of $NH_4{^+}$ ratios in the solution decreased the fresh fruit weight 62 days after transplanting with statistical differences. In the results of inorganic element analysis based on the dry weight of fully expanded mature leaves, N and P contents as well as micro cations such as Fe, Mn, Zn, and Cu increased as $NH_4{^+}$ ratios were elevated 62 days after transplanting. However, those of macro cations such as K, Ca, and Mg resulted in decreasing tendency. The elevation of $NH_4{^+}$ ratios in fertilizer solution resulted in the increase of EC and total N concentrations ($NO_3{^-}+NH_4{^+}$), but this decreased the pH as well as Ca and Mg concentrations in soil solution 62 days after transplanting. The K concentration in soil solution was the highest in the treatments of C and followed by D, B, E, and A. The above results indicate that the proper $NO_3{^-}:NH_4{^+}$ ratio in the nutrient solution is 73:27 (B) or 100:0 (A) and the B solution is proper for the vegetative growth and that of A is proper for reproductive growth stage.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Efects of Biodegradable Mulching Films Containing Rice Powder on Sweetpotato Growth (쌀 분말이 함유된 생분해성 멀칭필름이 고구마 생육에 미치는 영향)

  • Sin Young Park;Ju Hyun Im;Eun Byul Go;Kil Ja Kim;Jae Min Park;Dong Kwan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • In this study, two types of biodegradable film prototypes were produced using plastic resin containing rice powder. The application of these biodegradable films in sweetpotato (Ipomoea batatas L. Lam) fields and their impacts of plant growth, yield, and the soil environment were assessed, in comparison with Polyethylene (PE) film. The light transmittance of the biodegradable film containing 30% of 350 mesh rice powder (BF30-350RP) was 0.8%, which was lower than the 2.0% light transmittance of the biodegradable film containing 40% of 500 mesh rice powder (BF40-500RP) and 2.7% light transmittance of PE film. Surface temperature measurements on clear day indicated that the PE film exhibited the lowest temperature, with the minimal difference observed between BF40-500RP and BF30-350RP. Assessment of the damage ratio resulting from agricultural work revealed a ranking of 0.4% for the PE film, 3.3% for BF500-400RP, and 5.3% for BF350-30RP. Visible decomposition of BF40-500RP and BF30-350RP commenced after 40 and 30 days of outdoor exposure, reaching 62.3% and 70.4% decomposition at 90 days post-exposure, respectively. The decomposition of biodegradable films applied to sweetpotato fields progressed more slowly in BF40-500RP than in BF30-350RP. The BF40-500RP film on the surface of the ridges was decomposed by 5%, 30%, 55%, and 90% after 30, 60, 90, and 120 days after planting sweetpotato cuttings, respectively. Both types of biodegradable films at the ridge and furrow borders were completely decomposed after 75 days of sweetpotato planting. In a field where the surface was sealed by mulching without growing sweetpotatoes, the soil moisture and its deviation were lower in the order of PE film, BF40-500RP, and BF30-350RP, but the differences were not significant. The soil temperature was higher for PE film mulching than for the biodegradable films containing rice powder, but the differences were small. Two months after sweetpotato planting, the daily average soil moisture decreased by 2.5%point for BF30-350RP mulching, 1.5%point for BF40-500RP mulching, and 1.1%point for PE film mulching over seven days. Soil temperature was similar for both biodegradable film mulches, but increased steadily for the PE film mulch, reaching a daily average of 0.1℃ higher than for the biodegradable films. Sweetpotato vine growth and tuber yield were similar for all the mulching films tested.