• Title/Summary/Keyword: plastic property

Search Result 408, Processing Time 0.024 seconds

New Method of Gas Barrier Coating on Plastic Substrate for Flexible Display

  • Hwang, Hee-Nam;Choi, Jae-Moon;Kim, In-Sun;Park, Jong-Rak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.985-987
    • /
    • 2004
  • A plastic substrate for flexible display is developed. The gas barrier property in the substrate is improved through depositing metal and metal oxide multi layer on plastic film by PVD process. The metal/metal-oxide multiplayer on plastic film shows excellent gas barrier property and optical property.

  • PDF

Development and Performance Property Investigation of Lighting System using Plastic Optical Fiber (플라스틱 광섬유를 이용한 조명시스템 개발과 특성 분석)

  • Shin, Sang-Uk;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.25-32
    • /
    • 2010
  • Compared to general lighting method, the lighting system that uses optic fiber can provide only the visible light of good quality to subject by eliminating ultraviolet ray and infrared ray. Thanks to this merit, it is possible to prevent the hard phenomenon of subject caused by ultraviolet ray and infrared ray and to provide the agreeable light environment. This study developed indoors illumination system of high color rendering on the basis of plastic optic fiber with excellent optical property and processing to substitute halogen lamp which has been used for excellent color rendering in spite of low efficiency and short life. Producing pilot product of the designed illumination system and evaluating the property of electric and optical property, ultraviolet ray radiation quantity and temperature property, this study verified the excellence of suggested lighting system of plastic optic fiber.

Influence of the Flow Stress of the Rivet on the Numerical Prediction of the Self-Piercing Rivet (SPR) Joining (Self-Piercing Rivet 접합공정의 수치예측에 미치는 리벳 유동응력의 영향)

  • Kim, S.H.;Bae, G.;Song, J.H.;Park, K.Y.;Park, N.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.257-264
    • /
    • 2020
  • This paper is concerned with the influence of the plastic property of the rivet on the numerical prediction of the Self-Piercing Rivet (SPR) Joining. In order to predict the plastic property of the rivet, a ring compression specimen was directly fabricated from the rivet used for the mechanical joining of dissimilar materials, and the FE analysis together with the ring compression test was iteratively carried out by changing the plastic property of the rivet. For reliable FE analysis, a friction coefficient was estimated based on a friction calibration curve, measuring the reductions in inner diameter and height of the ring specimen after the compression test. From each simulation result, the force-displacement curves were then compared from each other so as to obtain the rivet plastic property that shows good agreement with the experimental result. The SPR joining between GA590 1.0t and Al5052 2.0t was conducted, and the numerical prediction was performed with the use of the plastic property evaluated based on the inverse analysis and the one referred from Mori et al. [11]. Comparison of the experiment and the numerical predictions in terms of the interlock and bottom thickness revealed that the reliable evaluation of the plastic property of the rivet is necessary for the trustworthy numerical prediction of the SPR joining.

Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product (냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석)

  • Suh D.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films (플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향)

  • Kim, Hwa-Min;Ji, Seung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.

A Comparative Study of the Retrogradation and Rheology of Backsulgi with Nutriprotein and Gelatinized Rice Powder (백설기에 제조한 고단백식품과 호화한 쌀가루를 첨가하여 노화지연 및 물성 대한 비교연구)

  • 오미향
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.4
    • /
    • pp.370-378
    • /
    • 2004
  • The purpose of this study was to investigate the effect of added nutriprotein and rice powder as a plasticizer on physicohemical property, texture property of Backsulgi. In the physicochemical property, the content of proximate composition of nutriprotein was measured as 6.1% of moisture, 3.6% of carbohydrate, 84.3% of crude protein, 0.6% of crude lipid, 5.4% of ash. The raw material of rice powder was measured as 9.6% of moisture, 83.7% of carbohydrate, 6.0% of crude protein, 0.4% of crude lipid, 0.3% of ash. Swelling power and pore ratio of the control were 78.53% and 72.42%, and tended to increase as the amounts of nutriprotein and plastic rice powder increased. Aging by Avrami eguation retarded in Backsulgi added 10% plastic rice powder than rice powder Backsulgi. All the samples added 2, 4, 6, and 8% nutriprotein at the temperatures of 20 were more effective than others on aging. In texture properties, cohesiveness and springiness were not significantly changed by adding nutriprotein and not significantly changed during the storage period in all samples. Hardness and gumminess decreased by adding 2∼8% nutriprotein and increased during the storage period in all samples. Springiness and gumminess decreased by adding 40% plastic rice powder and increased during the storage period in all sample. Cohesiveness and hardness decreased by the increase of plastic rice powder. The texture characteristics by rheometer showed that Backsulgi with nutriprotein and plastic rice powder exhibited lower in hardness than the control, indicating that nutriprotein and plastic rice powder were effective in retarding retrogradation, which is better when storage time became longer.

  • PDF

A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis (유한요소법을 이용한 2차원 절삭가공면의 소성스트레인에 관한 연구)

  • 김기환;문상돈;신형곤;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.988-991
    • /
    • 2001
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis (유한요소법을 이용한 절삭가공면의 소성스트레인에 관한 연구)

  • Shin, Hyung-Gon;Kim, Tae-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.69-75
    • /
    • 2003
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites (유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구)

  • Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF