• Title/Summary/Keyword: plastic optical fiber sensor

Search Result 43, Processing Time 0.025 seconds

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Fabrication and Characterization of a Fiber-Optic Alpha/Beta Detector for Nuclear Medicine Application (핵의학 적용을 위한 광섬유 기반의 알파/베타 검출기의 제작 및 특성분석)

  • Hong, Seung-Han;Yoo, Wook-Jae;Shin, Sang-Hun;Seo, Jeong-Ki;Han, Ki-Tek;Jeon, Da-Yeong;Cho, Seung-Hyun;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.367-373
    • /
    • 2012
  • We fabricated a fiber-optic alpha/beta detector, which is composed of a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer, to obtain the energy spectra of radioactive isotopes. As inorganic scintillators of a sensing probe, a ZnS(Ag) film was coupled with a $CaF_2$(Eu) crystal for alpha and beta spectroscopy. In this study, $^{210}Po$ and $^{90}Sr$ were used as alpha and beta sources, respectively, and we measured the radiation energy spectra using a fiber-optic alpha/beta detector to identify alpha and beta emitting radionuclides for nuclear medicine application. Also, the variations of energy spectrum were obtained according to the length of plastic optical fiber.

Measurement of Skin Dose and Percentage Depth Does in Build-up Region Using a Fiber-optic Dosimeter (광섬유 방사선량계를 이용한 선량보강 영역에서의 심부선량 백분율과 피부 선량률 측정)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Cho, Young-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In this study, we have fabricated a fiber-optic dosimeter using an organic scintillator and a plastic optical fiber. The dosimeter measure skin dose and percentage depth dose in a build-up region for an incident high energy photon beam. The scintillating light generated in the organic sensor probe embedded in a solid water phantom is guided by 30 m plastic optical fiber to a light-measuring device such as a PMT or an electrometer. In addition, using a fiber-optic dosimeter or a GAFCHROMIC EBT film, skin dose and percentage depth dose in the build-up region are measured and compared.

Acceleration Sensor Using Optical Fibers and Film Gratings (광섬유와 필름격자를 이용한 가속도 센서)

  • Lee, Youn-Jea;Jo, Jae-Heung;Kwon, Il-Bum;Seo, Dae-Cheol;Lee, Nam-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.175-181
    • /
    • 2008
  • We develop a fiber optic acceleration sensor with LED, PD, POF, and a cantilever beam, having film grating at the edge of the beam. Light is transmitted from LED to PD through the film grating. When the cantilever beam moves by external vibration, output light is modulated as sinusoidal signals. The characteristics of output signals are dominated by the spacing of the film grating and also by the size and the elasticity of the beam. Two output signals, having constant initial phase difference, are obtained by two gratings with 90 degree phase difference. Those two signals are used to determine phase angle, which is proportional to the displacement of the beam. Finally, the acceleration is determined from conversion equation between displacement and acceleration. This sensor is designed for monitoring the vibration of large and complex building in the low frequency range of below 7 Hz, and is particularly suitable to measure acceleration in electromagnetic environments.

Monitoring of Retrofitted Reinforced Concrete Beams with Hybrid Fiber Reinforced Polymer (광섬유 센서를 이용한 복합 섬유 재료로 보강된 철근 콘크리트 보의 모니터링)

  • 이옥기;신영수;김기수;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.509-514
    • /
    • 2001
  • The Fibre-optic Bragg grating (FBG) sensor is broadly accepted as a structural health monitoring device for Fibre reinforced plastic (FRP) materials by either embedding into or bonding onto the structures. The accuracy of the strain measured by using the FBG sensor is highly dependent on the bonding characteristics among the bare optical fibre, protective coating, adhesive layer and host material. In general, the signal extracted from the embedded FBG sensor should reflect the straining condition of the host structure. This paper presents a theoretical model to evaluate the differential strains between the bare fibre and host material with different adhesive thickness and modulus of the protective coating of the embedded FBG sensor.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water (Part I. : Design and development) (오염수 내의 유기인 화합물의 측정을 위한 광섬유 바이오센서 (제 1 부 : 장치 설계 및 개발 ))

  • Choi, Jeong-Woo;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-56
    • /
    • 1994
  • Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water was developed, which was the component of pesticides and agricultural agent. The detection principle of designed sensor was the pH variance induced by a reaction of acetylcholinesterase enzyme inhibited by organophosphorus compounds. The pH variance was detected by the optical system to measure the organophosphorus compounds. Litmus was selected as the pH-sensitive dye suitable to the enzyme reaction and a light source to be detected by the optical system. The enzyme entrapped in Ca-alginate gel was immobilized at the inner wall to maintain the high activity of enzyme and to be reused for a long period. The optical fiber was used to miniaturize and control remotely the sensor system. The He-Ne laser with 632 nm was selected as the light source to prevent light intensity fluctuation by the product. Cheap plastic optical fibers were used as the transmission part of the light and the phototransistor was used as the reception part of light based on the wavelength of He-Ne laser. The proposed fiber-optic biosensor has the linear analytical range of 0 ppm-1.5 ppm with response time of 5 minutes.

  • PDF

Electroactive Polymer Composites as a Tactile Sensor for Biomedical Applications

  • Kim GeunHyung
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.564-572
    • /
    • 2004
  • Modem applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a 'created composite' results; it consists of these 'pseudofibers' embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials' micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

Measurement of Relative Depth dose of Therapeutic Photon Beam Using One-Dimensional Fiber-Optic Phantom Dosimeter (1차원 광섬유 팬텀선량계를 이용한 치료용 광자선의 피부 및 선량보강영역에서 상대선량 측정)

  • Moon, Jin-Soo;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Park, Jang-Yeon;Cho, Young-Ho;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we fabricated a fiber-optic phantom dosimeter by arraying square type of plastic optical fibers in a PMMA phantom for measuring relative depth doses of therapeutic photon beams. To minimize the cross-talk between fiber-optic dosimeters, we selected appropriate septum by measuring leaked scintillating lights according to the various kinds of septa. In addition, we measured percentage depth doses of 6, 15 MV photon beams using a fiber-optic phantom dosimeter.

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.