• 제목/요약/키워드: plastic modulus

검색결과 281건 처리시간 0.021초

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과 (Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank)

  • 김정규;김철수;조동혁;김도식;윤인수
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

CAE에 의한 스웨이징(swaging) 제조 공정의 설계 및 해석 (Design and Analysis of the Swaging Manufacturing Process Using CAE)

  • ;허용정
    • 한국산학기술학회논문지
    • /
    • 제5권5호
    • /
    • pp.442-446
    • /
    • 2004
  • 스웨이징(swaging)제조 공정의 컴퓨터 시뮬레이션에 관한 연구를 수행하기 위하여 상용 소프트웨어를 사용하였다. 시행오차를 통하여 획득한 경험에 기반을 두어 튜브 스웨이징 공정의 시뮬레이션이 이루어졌으며, 변형 경화 지수(strain hardening exponent) n과 소성계수(plastic modulus) K는 튜브재료의 실제 인장 측정 시험을 통하여 얻어졌다. 두 종류의 서로 다른 다이와 튜브 형상을 사용하여 비교하였다. 전처리는 HyperMesh(r), 해석은 LS-DYNA(r), 후처리는 LS-TAURUS(r)를의 상용 소프트웨어를 사용하였으며, 본 연구에서 얻어진 결과들을 문헌에서 이용 가능한 결과들과 비교하였다.

  • PDF

Failure characteristics and mechanical mechanism of study on red sandstone with combined defects

  • Chen, Bing;Xia, Zhiguo;Xu, Yadong;Liu, Shuai;Liu, Xingzong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.179-191
    • /
    • 2021
  • In this study, the strength and failure mechanism of red sandstones with combined defects were investigated by uniaxial compression tests on red sandstones with different crack angles using two-dimensional particle flow code numerical software, and their mechanical parameters and failure process were studied and analyzed. The results showed that the mechanical characteristics such as peak strength, peak strain, and elastic modulus of the samples with prefabricated combined defects were significantly inferior than those of the intact samples. With increasing crack angle from 15° to 60°, the weakening area of cracks increased, elastic modulus, peak strength, and peak strain gradually reduced, the total number of cracks increased, and more strain energy was released. In addition, the samples underwent initial brittle failure to plastic failure stage, and the failure form was more significant, leading to peeling phenomenon. However, with increasing crack angle from 75° to 90°, the crack-hole combination shared the stress concentration at the tip of the crack-crack combination, resulted in a gradual increase in elastic modulus, peak strain and peak strength, but a decrease in the number of total cracks, the release of strain energy reduced, the plastic failure state weakened, and the spalling phenomenon slowed down. On this basis, the samples with 30° and 45° crack-crack combination were selected for further experimental investigation. Through comparative analysis between the experimental and simulation results, the failure strength and final failure mode with cracks propagation of samples were found to be relatively similar.

구형석출물을 갖는 무한 고체에 전수압이 가해지는 경우에 대한 탄소성해 (An elasto-plastic solution for infinite solid containing a spherical precipitate under hydrostatic pressure)

  • 최병익;엄윤용
    • 대한기계학회논문집
    • /
    • 제5권2호
    • /
    • pp.122-130
    • /
    • 1981
  • Equation of equilibrium is derived and solved for an infinite isotropic solid under applied hydrostatic stress which is uniform at large distance, and disturbed by a spherical precipitate which has isotropoc elastic constants dirrerent form those of the matrix. A linear strain hardening behavior of the matrix is assumed, and an elasto-plastic sloution is obtained. The difference of the total strain energy stored inthe infinite solid with and without a precipitate is computed, and compared with that for purely elastic case. Finally the effect of the ratio of the bulk modulus of the precipitate to that of the matrix and the effct of linear strain hardening rate on the plastic zone size and the energy difference are discussed.

그릴리지 구조의 소성 붕괴 설계 (New-directional Approach : Plastic Collapse Design of Grillages)

  • 김윤영;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.96-103
    • /
    • 2000
  • This research is a new design method, which will be presented as a basic concept for a more efficient minimum weight design of grillages, as an attempt to describe true collapse mechanism in as overall search as possible. It serves as introduction to the numerical technique of Linear Programming(LP) and Automatic Modified Direct Plastic Frame Analysis(AMDPFA). Attention is directed to both analysis and design, and emphasis is placed on the physical significance of Systematic Searching Techniques(SST) involved. In weight minimum grillages design, the parameterisation study in optimum beam configuration which was carried out over the range of beam sections for a given plastic section modulus likely to occur in structures by suing an adaptive stochastic optimisation technique, Genetic Algorithms.

  • PDF

Evaluation of limit load analysis for pressure vessels - Part II: Robust methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.131-142
    • /
    • 2017
  • Determining limit load for a pressure bearing structure using elastic-plastic finite element analysis was computationally very expensive. A series of robust methods using elastic modulus adjustment techniques (EMAP) to identify the limit load directly were proposed. The numerical implementation of the robust method had the potential to be an attractive alternative to elastic-plastic finite element analysis since it was simple, and required less computational effort and computer storage space. Another attractive feature was that the method provided a go/no go criterion for the limit load, whereas the results of an elastic-plastic analysis were often difficult to interpret near the limit load since it came from human sources. To explore the performance of the method further, it was applied to a number of configurations that include two-dimensional and three-dimensional effects. In this study, limit load of cylinder with nozzle was determined by the robust methods.

교차로 포장 소성변형 저감을 위한 해석적 연구 (An Analytical Study to Reduce Plastic Deformation in Intersection Pavements)

  • 최준성;이강훈;권수안;정진훈
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.