• Title/Summary/Keyword: plastic injection mold manufacturing

Search Result 99, Processing Time 0.02 seconds

A Study on Manufacturing of Plastic Injection Mold for Warpage Characteristics of Mobile Phone Cover (모바일폰 커버의 휨특성 평가를 위한 금형 제작에 관한 연구)

  • Kim M. Y.;Lee S. H.;Kwon C. O.;Kim O. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.126-131
    • /
    • 2005
  • In the present study, warpage characteristics of mobile phone cover through injection molding process were investigated by using design of experiments. Warpage in plastic injection molding process has a significant effect on quality of product. Effects of injection time, packing pressure, packing time, mold temperature ana melt temperature on warpage of mobile phone cover were considered by CAE analysis and experiment with Taguchi method. The degree of warpage for the injection molded product was measured by using three dimensional CMM. It was shown that temperature parameter has more significant effect on the warpage of mobile phone cover than pressure parameter.

  • PDF

Effect of Injection Molding Conditions of Effective Surface Properties of F-theta Lens (사출 성형 조건이 에프세타 렌즈의 유효면 특성에 미치는 영향)

  • Park, Yong-Woo;Zhang, Qi;Moon, Seong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.20-27
    • /
    • 2021
  • The effective surface of lens was studied for injection molding process and to enable mass production of f-theta lens, which is the primary component of laser printers and laser scanning systems. Injection molding is an optimal method if f-theta lens is frequently used for the mass production of plastic lenses as an aspherical lens that requires ultra-precision. A uniform injection molding system should be maintained to produce high quality lenses. Additionally, to maintain these injection molding systems, various factors such as pressure, speed, temperature, mold and cooling should be considered. However, a lens with the optical characteristics of an f-theta lens can be obtained. The effects of melting and cooling of plastic resin on the effective surface of f-theta lenses and the numerous factors that affect the injection molding process were studied.

An integrated CAD system for mold design in injection molding processes (플라스틱 사출 금형 설계를 위한 CAD시스템의 개발)

  • 이상헌;이건우;고천진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1227-1237
    • /
    • 1988
  • A practically useful CAD system for mold design in the plastic injection molding processes has been developed. Even though many efforts have been tried to simulated the injection molding process, this is the first attempt toward an automatic mold design system instead of a manufacturing or a simulation system. In this system the computational routines, the data base for mold design, and the routines for three dimensional modeling are blended together so that the designed mold is obtained as a solid model. For this development, the following problems have been solved. First, the modeling capability of the plastic parts has been implemented by incorporating the modeling routines of a constructive solid geometric modeling system and developing a constant thickness modeling conditions, and that of standard mold bases have been established. Third, the experimental know-how and the empirical formulae have been collected and blended together with the modeling routines of a geometric modeling system to provide the high level commands for designing mold.

A Study on Bubbles in The RIM Process (림성형 공정의 기포에 관한 연구)

  • 양화준;강대원;강영중;김성준;장태식;이일엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.303-306
    • /
    • 2001
  • To shorten the delivery time for new products, a lot of prototype plastic parts manufacturing technologies have been developed including injection molding, vacuum casting, thermal forming and so on. Among them, RIM is becoming one of a important soft tooling methods to produce prototype and mass production parts within short time. Further more, as the rapid prototyping technology based tooling methods are playing an important role in prototype manufacturing industry, the utility of the RIM is increasing. But few analyses and mold design techniques have been developed so far due to its chemical and mechanical complexity during the packing and curing process. This research suggests mold gate design criteria to prevent bobbles from molded parts through simplified mathematical model and change of bubble sizes according to the geometry of the molded parts through experiments. Also this study shows the differences of bobble generation mechanism between RIM and injection molding.

  • PDF

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

A Study on Injection Molding Analysis of a Plastic Rack Gear (플라스틱 랙기어의 사출성형 해석에 관한 연구)

  • Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.50-55
    • /
    • 2020
  • This study investigates the injection molding of a plastic rack gear and focuses on deflections in the part. The causes of deflections were found and resolved through a trade-off study by injection molding analysis. Based on a warpage analysis, the fiber orientation was found to be a dominant factor in the occurrence of deflections. Changes in the part design and various injection conditions were analyzed for their effects in reducing deflections. Based on the trade-off study, a new part bottom design, injection time, and melt temperature were recommended. A trial injection was done for the new plastic rack gear, and measurements showed that its flatness surpassed that of the original part and met the specified requirement. The short injection time, low melt temperature, and symmetric similar configuration of the part contributed to the reduction in deflections. Therefore, optimized gate design and injection conditions as well as a new part design were validated through injection molding analysis in this study.

The effect of injection molding cooling parameters on shrinkage of plastic roller (사출성형의 냉각 파라미터가 플라스틱 롤러의 수축에 미치는 영향)

  • Cho, Sung-Gi;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2021
  • A plastic roller for opening and closing the safety door of the injection molding machine was molded. The dimensional change of the measurement position of the roller was studied when the cooling time was applied differently among the molding conditions, and when the temperature of the coolant applied for mold cooling was also applied differently. Cooling times of 300 seconds and 400 seconds, hot and low-temperature coolant were applied. When the low-temperature coolant was applied, the measuring point of the roller shrank by 0.03 mm. However, when the high-temperature coolant was applied, the measuring point shrank by 0.3 mm. It was found that the application of low-temperature coolant among coolants was more suitable for the reference dimension of the molded article compared to the application of high-temperature coolant. Among the cooling water applied for the molding of plastic rollers, when high-temperature coolant is applied, the shrinkage rate measured immediately after ejection was smaller than when low-temperature coolant is applied. However, it was found that post shrinkage, which occurs over time, occurs much larger when high-temperature coolant is applied.

A study on multi-cavity injection mold and molding elemental technology for plastic product of high precision tolerance (고정밀 플라스틱 제품 성형을 위한 다수 캐비티 사출금형 및 성형 요소기술에 관한 연구)

  • Jong-In Son;Chul-Ki Kim;Byeong-Uk Song
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.57-62
    • /
    • 2023
  • As a representative method for mass production, a multi-cavity type mold capable of simultaneously molding products of the same shape can be applied. It has the advantage of improving the productivity from several times to several tens of times, but it may cause disadvantages which is the quality deviation with each cavity. This study, therefore, has tried to increase the cavity filling balance by using a melt flipper and a flow distance control part in the runner part of the mold. Along with this, the design and manufacturing of air vents during injection molding have been verified through experimental methods to achieve a higher level of multi-cavity filling balance and dimensional accuracy.

A Study on the Analysis of Injection Molding of F-theta Lens (에프세타 렌즈의 사출 성형 해석에 관한 연구)

  • Park, Yong-Woo;Moon, Sung-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, we investigate the injection molding of f-theta lens, an important element of the laser scanning unit of laser printers and scanning systems. The f-theta lens is an aspherical plastic lens that must be molded with a precision of seconds. An injection molding method is often used for mass producing aspherical plastic lenses at a low cost. In the injection molding process, costs related to forming and injection are included. Therefore, in this study, to determine the shrinkage and deformation of injection molded f-theta lens, we predict the pressure and temperature distributions. Further, based on the analysis of the predictions, we maximize the design efficiency and verify the cost and development period reduction.

Development of Hybrid RIM Mold to Form Outfit-part for Prototype-cars (시작차용 의장부품 성형을 위한 하이브리드 림 몰드 개발)

  • Yang, Hwa-Jun;Hwang, Po-Jung;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • RIM(Reaction Injection Molding) is a widely used method to manufacture middle-large size outfit-part for a prototype car. The main advantage of RIM is the capability of manufacturing a small number of prototype parts with less cost and lead time than injection molding which is the most popular method to manufacture plastic parts. Generally, epoxy resin and RTV(Room Temperature Vulcanization) silicon are used as mold materials for RIM, and the selection of mold materials is usually depended upon the industrial environment of manufactures and it decides overall mold making process and part quality. This paper suggests a new mold making process by consolidating the advantages of epoxy resin and RTV silicon based RIM mold to enhance the parts quality while reducing the manufacturing cost and time and shows the competitiveness of the suggested process compared with conventional methods.

  • PDF