• Title/Summary/Keyword: plastic hardener

Search Result 7, Processing Time 0.027 seconds

Analysis of Properties and Phantom Design Based on Plastic Hardener and Softener for Ultrasonic Imaging (초음파 영상용 플라스틱 기반의 팬텀제작 및 특성 분석)

  • Lee, G.J.;Park, D.H.;Shin, T.M.;Seo, J.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.302-306
    • /
    • 2008
  • Plastic hardener and softener based ultrasound phantoms were made in various constitutions and their acoustic properties were measured. Speed of sound is approximately $1.4\;mm/{\mu}sec$ in all the phantoms, which is about 7% less than that of in soft tissue. Attenuation coefficient is strongly dependent on the ratio between hardener and softener. In order to achieve the tissue level attenuation (0.5 dB/cm/MHz), 60% of hardener or less is required. The synthesized phantoms can be preserved for more than 6 months without structural degradation.

Ultrasonic Phantom Based on Plastic Material for Elastography (초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발)

  • Ahn, Dong-Ki;Joung, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.368-373
    • /
    • 2009
  • A human tissue mimicking phantom is constructed to assess the performance of a medical ultrasound elasticity imaging system. In a human body, the tumor or cancer is stiffer than its surrounding normal tissue. A technique fur imaging the elasticity of such a tissue is referred to as elastography. Homogeneous elasticity phantoms with differing Young's moduli are constructed using a plastic hardener and softener to simulate the mechanical characteristics of a diseased human tissue. The Young's modulus of the fabricated homogeneous phantom materials were measured from 11.1 to 79.6 kPa depending on the mixing ratio of the amount of the hardener to that of the softener. An ultrasound lesion mimicking phantom was made of these materials, and ultrasound elasticity imaging was performed on it. It is confirmed in this paper that the fabricated plastic-based elasticity phantom is useful in representing the elastic characteristics of a human tissue.

Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber (투명 에폭시와 광섬유를 이용한 방사선량 측정용 유기섬광체 센서 개발)

  • Park, Chan-Hee;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Remote detecting system for a radiation contamination using a plastic scintillator and an optical fiber was developed. Using a commercially available silica optical fiber and a plastic scintillator, we tested then for a real possibility as a remote monitoring detector. Also, a plastic scintillator was developed by itself, and evaluated as a radiation sensor. The plastic scintillator was made of epoxy resin, a hardener and an organic scintillation material. The mixture rate of the epoxy resin, hardener and organic scintillator was fixed by using their emission spectrum, transmittance, intensity etc. In this study, in order to decrease the light loss of an incomplete connection between an optical fiber and a scintillator, the optical fiber was inserted into the scintillator during the fabrication process. The senor used a plastic optical fiber and was estimated for its detection efficiency by an optic fiber's geometric factor.

  • PDF

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

Development of a Non-invasive Ultrasonic Measurement System for tissue elasticity (비침습적 초음파 조직 탄성도 측정 시스템 개발)

  • Lee, G.J.;Choi, W.H.;Yu, J.W.;Seo, J.B.;Choi, S.H.;Shin, T.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.469-475
    • /
    • 2009
  • Diseases caused by indurate tissues of the internal organs are liver cirrhosis and abdominal sclerosis. The cause of chronic gastro-intestinal disease is a digestive system disorder and a defecation disorder. They impede peristaltic movement and digestive system with the symptom that indurate tissues. The purpose of the present study was to determine the disease grade quantitatively by measuring an indurated standard of tissues and organs. For the measurement of elasticity, we designed the system that measure the displacement of the substance and approved pressure using ultrasound transducer. For verification of developed system, we compared elasticity as results of experiment between the developed system and public elasticity measurement machine at individual plastic phantoms made by plastic hardener and softener. Elasticity of the plastic phantoms is averagely 0.007MPa lower measured by developed system than Micro-indenter, and less than 10% errors. Comparing with economical value and accuracy between developed system and Micro-indenter, the system is significant of measurement for tissue elasticity. Thus, it is possible to measure a elasticity at human tissue and organ. A chronic gastro-disease as well as grade could be decided objective validity using this system.

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF