• 제목/요약/키워드: plastic design approach

검색결과 174건 처리시간 0.026초

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • 제2권3호
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.

입체요소를 사용한 플라스틱 렌즈의 사출성형 및 후변형 해석 (Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements)

  • 박근;한철엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.784-787
    • /
    • 2003
  • The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes. residual stress is estimated and the final deformed patters are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

  • PDF

비구면 광학렌즈 성형에 있어서 유한요소법과 신경회로망을 이용한 사출조건 예측 시스템의 개발 (The prediction of the optimum injection conditions of aspherical lens by using FEM and Neural Network)

  • 곽태수;스즈키토오루;오오모리히토시;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2002
  • A neural network model for predicting the quality or soundness of the injected plastic aspherical lens based on process parameters has been developed. The approach uses a Real Time Recurrent Neural Network 4-5-2 (RTRN) trained based on input/output data that were taken from FE analysis worts carried out through a CAE software. The system has been developed to search an optimum set of process parameters and reduce the time required for planning the conditions of plastic injection molding at the design stage.

  • PDF

FOA (first-order-analysis) model of an expandable lattice structure for vehicle crash energy absorption of an inflatable morphing body

  • Lee, Dong-Wook;Ma, Zheng-Dong;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.617-632
    • /
    • 2011
  • A concept of crash energy absorbing (CEA) lattice structure for an inflatable morphing vehicle body (Lee et al. 2008) has been investigated as a method of providing rigidity and energy absorption capability during a vehicular collision (Lee et al. 2007). A modified analytical model for the CEA lattice structure design is described in this paper. The modification of the analytic model was made with a stiffness approach for the elastic region and updated plastic limit analysis with a pure plastic bending deformation concept and amended elongation factors for the plastic region. The proposed CEA structure is composed of a morphing lattice structure with movable thin-walled members for morphing purposes, members that will be locked in designated positions either before or during the crash. What will be described here is how to model the CEA structure analytically based on the energy absorbed by the CEA structure.

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • 제2권2호
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

실물 철근콘크리트 교각의 유사동적 실험에 의한 내진성능 평가 (Pseudo-Dynamic Test for Seismic Performance Evaluation of RC Bridge Piers)

  • 박창규;박진영;정영수;조대연
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.250-257
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach Pseudo dynamic tests of six full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, five test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력 (Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test)

  • 박창규;박진영;조대연;이대형;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.