• 제목/요약/키워드: plastic bumper

검색결과 14건 처리시간 0.019초

열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구 (Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin)

  • 안동규;김세훈;박근성
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

플라스틱 범퍼 설계를 위한 해석기법 (Analysis techniques for plastic bumper design)

  • 심재우
    • 오토저널
    • /
    • 제13권3호
    • /
    • pp.13-18
    • /
    • 1991
  • 여기서는 자동차 분야중 Plastic이 가장 많이 적용되고 있는 Bumper의 초기 설계 가능성 확인(Feasibility study) 및 최적 설계를 위한 유동해석, 구조해석 그리고 Blow Molding Back-Beam 해석을 위한 PITA(Polymer Inflation and Thinning Analysis) 등의 기법들에 대한 내용 및 적용 방법 등에 대하여 서술하였다. 특히, Energy Absorbing 역할을 하는 Back-Beam은 Blow Molding에 의한 설계방법에 촛점을 맞추었다.

  • PDF

자동차 범퍼금형에서의 게이트 형상이 제품 성형에 미치는 영향 (The effect of Gate type on Injection Molding of Automotive Bumper)

  • 황시현;지성대;김명기;권윤숙;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1724-1727
    • /
    • 2005
  • Injection molding process is one of the processes that can mold plastic product as low cost. However, manufacturing process of automobile bumper mold has lots of trial and error. Especially, desiging of a huge mold such as bumper mold is needed to establish a design standard for runner system. In this study, CAE was conducted to observe the variation of melt-flow by changing runner and gate type in automobile bumper mold as preceding study for a standard design of runner system.

  • PDF

하이드로 포밍 성형공정 해석을 위한 강소성 유한요소 프로그램 개발 및 적용 (Rigid-Plastic Finite Element Approach to Hydroforming Process and Its Application)

  • 강범수
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.22-28
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit for two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral i is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

재활용 범퍼의 효율적인 적용을 위한 신재의 최적 배합비율에 관한 연구 (Study on a recipe of recycled bumper and pristine materials for application of vehicle parts)

  • 손영곤
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.175-180
    • /
    • 2016
  • 폐 자동차에서 떼어낸 범퍼는 분쇄 및 도장 (paint)제거 공정을 거친 후 신재 (pristine materials)와 일정 비율 혼합하여 자동차 부품을 제조하는 공정에서 재활용된다. 본 연구에서는 신재와 도장이 제거된 범퍼 분쇄품을 일정 비율 혼합하여 혼합비에 따른 기계적인 물성 및 화학적인 성질을 연구하였다. 신재에 범퍼 분쇄 품을 혼합하였을 때 인장강도 및 굴곡탄성율과 같은 강성은 두 물질의 조성 평균으로 나타났지만, 충격강도와 파단 신율과 같은 인성 (toughness)은 조성 평균보다 낮은 negative deviation을 보였다. 이는 두 물질간의 혼화성이 부족하여 발생하는 결과라는 것을 FT-IR 분석을 통하여 알 수 있었다. 범퍼 분쇄품의 혼합 비율이 30% 이상에서 두 물성이 급격히 저하되었다. 이를 활용하면 최적의 배합 비율을 선정할 수 있을 것이다. 또한 이전 연구에서 밝힌 바와 같이 도장 제거율을 80 % 수준까지는 달성하기는 쉽지만 나머지 20%를 제거하기 위하여 많은 노력과 에너지가 소요되는 바, 도장이 제거되지 않은 분쇄품과 도장이 제거된 분쇄품의 혼합 비율에 따른 기계적인 물성에 대하여 실험하였다. 도장이 제거되지 않은 범퍼 분쇄품이 소량만 첨가되어도 기계적인 물성은 급격히 저하가 되어 폐 범퍼를 재활용하기 위해서는 도장 제거 공정이 매우 중요하다는 사실을 알 수 있었다.

고장력강 범퍼 빔의 롤 포밍 공정 (Roll Forming Analysis for High Strength Steel Bumper Process)

  • 김동홍;정동원
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

연성파괴모델의 유한요소법을 이용한 하이드로포밍공정에의 성형한계 예측 (Prediction of Forming Limit in Hydroforming Processes by Using Finite Element Method and Ductile Fracture Criterion)

  • 김대환;뇌여평;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.230-235
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit fer two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral I is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

캐비티 온도센서를 이용한 최적 사출공정 제어 (Optimal Control of Injection Molding Process by Using temperature Sensor)

  • 박천수;강철민
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

자동차 부품용 무도장 메탈릭 플라스틱 소재 개발 (Development of Paint-free Metallic Plastic Material for Automotive Parts)

  • 최민진;조정민;최영호;최민호;이춘수;성한기;이경실;박기훈;황세종
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.295-299
    • /
    • 2022
  • 본 논문에서는 범퍼 스키드 플레이트 및 아웃사이드미러 하우징 부품에 적용되는 polypropylene (PP)와 acrylonitrile styrene acrylate (ASA) 소재를 활용하여 무도장 메탈릭 소재 구현에 대해 연구하였다. 금속 효과를 극대화하기 위해 알루미늄 입자의 종류, 크기, 함량을 최적화하였고 웰드 라인을 은폐하기 위해 종횡비가 상이한 하이브리드 알루미늄 입자를 사용하였다. 또한 부품 표면에 발생되는 플로우 마크를 개선하기 위해 유동성을 제어하였으며 사출 해석을 수행하였다.