• Title/Summary/Keyword: plaster die-casting

Search Result 6, Processing Time 0.027 seconds

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

Die Cast Prototyping using Plaster Casting with Pressurized Vibration Casting Machine

  • Kim, Ki-Don;Yang, Dong-Yol;Park, Tae-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2001
  • This work is concerned with the development of a new plaster die casting process the combines pressurization and vibration for the prototyping of die-castings, and also with a plaster die-casting machine that has a structure quite similar to that of an ordinary die casting machine. The machine utilized an air cylinder for pressurization and a magnetic actuator for vibration. A rapid prototyped pattern is made by the LOM process to prepare a plaster mold. In the process, a plunger int he developed machine simultaneously pressurizes and vibrates the molten metal to fill the plaster mold completely and to facilitate the creation of nuclei in the molten metal, respectively. The developed machine produced a prototype of an end clutch cover with a remarkable improvement in mechanical properties.

  • PDF

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

Numerical Simulationof Plaster Casting with Pressurized Vibration (진동을 부가한 저압의 석고주조 공정 해석)

  • Kim, Gi-Don;Yang, Dong-Yeol;Jeong, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.101-109
    • /
    • 2001
  • The simulated die casting process in which the traditional plaster casting process is combined with rapid prototyping technology is being used to produce Al, Mg and Zn die casting prototypes. Because of lower mechanical properties induced by the large grain structure and incomplete filling, conventional plaster casting is not suitable for the simulated die casting process. A plaster casting process with pressurized vibration was developed for the simulated die casting process[5]. In this paper, numerical simulation for the filling stage of the process has been performed to show the effect of the pressurized vibration for complete filling. Treatment of boundary condition based on the finite element method has been proposed for imparted pressurized vibration in the plaster casting process.

  • PDF

Development of Rapid Tooling Technology for Shoe Mold and Its Applications (신발 금형의 쾌속제작기술 개발 및 그 적용에 관한 연구)

  • Chung, Sung-Il;Im, Yong-Gwan;Jeong, Hae-Do;Jeong, Du-Su;Bae, Tae-Yong;Lee, Seok-Woo;Choi, Han-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1371-1379
    • /
    • 2003
  • RP&M (Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, because the production cycle is getting shorter owing to various needs of the consumer. In this paper, rapid tooling technology is applied to the casting process. The casting process has the ability to reflect complicated shapes in one process. But it has not been widely used to make a die and mold because of the poor surface quality caused by air bubbles on the surface of the casting product. In this study, the porous casting mold is fabricated from a mixture of plaster and water-soluble binder. The porous casting mold can improve the characteristics of casting products with the help of the vacuum sealed casting process. The vacuum sealed casting process is an advanced technology that removes the air bubbles between the porous casting mould and the liquid metal, thus making the surface of the casting product finer. The purpose of this paper is to develop a high quality shoe mold using porous casting mold and to apply the RP&M technology to the shoe industry.

MARGINAL FIT RELATED TO MARGIN TYPES OF GLASS INFILTRATED ALUMINA CORE FABRICATED FROM AQUEOUS-BASED ALUMINA TAPE

  • Oh, Nam-Sik;Yu, Byeung-Su;Kim, Il-Kyu;Choi, Jin-Ho;Kim, Dae-Joon;Park, Il-Seok;Lee, Myung-Hyun;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • Statement of problem. In-Ceram system is one of the all-ceramic crowns that can be used in anterior 3 unit fixed partial dentures and posterior single crowns. The alumina core used in In-Ceram system is manufactured using slip-casting technique. The slip-casting technique is difficult and technique sensitive. To improve this problem, tape-casting method was introduced into dentistry. There were no studies to examine the effect of margin design on the margin fitness of all-ceramic crowns fabricated from alumina tape. Purpose. The purpose of this study was to compare the marginal fitness of glass infiltrated alumina core fabricated from aqueous-based alumina tape according to different margin types ($90^{\circ},\;110^{\circ},\;135^{\circ}$ shoulder margin). Material and method. Three upper central resin incisors were prepared with $90^{\circ},\;110^{\circ}$, and $135^{\circ}$ shoulder margins for all-ceramic crowns, respectively. The resin teeth were duplicated and master die and special plaster die were made as usual. After alumina cores were fabricated from aqueous-based alumina tape, cores were cemented to each 15 epoxy dies replicated from three resin teeth with resin cement. These cemented cores were embedded in epoxy resin. Specimens were cut mesiodistally and buccolingually. Marginal gap and discrepancy were measured under microscope. Results. The marginal gap and discrepancy of $90^{\circ}$ marginal angle was $75.1{\mu}m,\;86.6{\mu}m,\;110^{\circ}$ marginal angle was $41.5{\mu}m,\;50.7{\mu}m$ and $135^{\circ}$ marginal angle was $51.7{\mu}m,\;54.2{\mu}m$, respectively. The smallest value was seen in 110 (angle, which was statistically significant compared to that of $90^{\circ}$ angle (p<0.05). Conclusion. Marginal fitness of alumina cores made of alumina tape with $110^{\circ}$ shoulder margin was best and others were clinically acceptable.