• 제목/요약/키워드: plasmodium

검색결과 209건 처리시간 0.026초

Hemozoin Pigment: An Important Tool for Low Parasitemic Malarial Diagnosis

  • Mohapatra, Sarita;Ghosh, Arnab;Singh, Ruchi;Singh, Dhirendra Pratap;Sharma, Bhawna;Samantaray, Jyotish Chandra;Deb, Manorama;Gaind, Rajni
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.393-397
    • /
    • 2016
  • Low parasitemic condition in malaria remains a diagnostic challenge; as the available diagnostic methods failed to detect. Currently, hemozoin (Hz) pigment is gaining attention in the diagnosis of malaria. The major drawback is ease of detection of Hz in routine practice. A pilot study was conducted to evaluate the role of Hz pigment and to compare the performance of quantitative buffy coat assay (QBC) and PCR in such conditions. Clinically suspected cases of malaria were examined by both Giemsa stain and immunochromatographic test (ICT). Samples positive by ICT and negative by Giemsa stain were further examined by nested PCR targeting 18S rRNA and QBC for the presence of malaria parasites and pigments. Thirty blood samples fulfilled the inclusion criteria out of which 23 were Plasmodium vivax (Pv), 4 Plasmodium falciparum (Pf), and 3 mixed (Pv and Pf) by immunochromatographic test. Twenty-one out of 30 (70%) were positive by nested PCR in comparison to 25/30 (83%) by QBC. Samples containing both malaria parasites and Hz pigment by QBC completely showed concordance with the PCR result. However, 61% of total samples containing only Hz pigment were observed positive by PCR. Hz pigment remains an important tool for malaria diagnosis. Identification of leukocytes containing pigments by QBC not only indicates recent malarial infections but also puts light on severity of the disease. QBC assay is a rapid, highly sensitive, and cost-effective method to detect malaria parasites and Hz pigment especially in low parasitemic conditions.

Evaluation of Rapid Diagnostics for Plasmodium falciparum and P. vivax in Mae Sot Malaria Endemic Area, Thailand

  • Chaijaroenkul, Wanna;Wongchai, Thanee;Ruangweerayut, Ronnatrai;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • 제49권1호
    • /
    • pp.33-38
    • /
    • 2011
  • Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pan$^{TM}$, Malaria Ag-Pf$^{TM}$, and Malaria Ag-Pv$^{TM}$ tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pf$^{TM}$ and Malaria Antigen Pf/Pan$^{TM}$ compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pf$^{TM}$, Malaria Ag-Pv$^{TM}$, and Malaria Antigen Pf/Pan$^{TM}$ were 93.3%,98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pf$^{TM}$, Malaria Antigen Pf/Pan$^{TM}$, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%,92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pf$^{TM}$, Malaria Ag-Pv$^{TM}$, Malaria Antigen Pf/Pan$^{TM}$, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.

Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand

  • Kuesap, Jiraporn;Chaijaroenkul, W.;Rungsihirunrat, K.;Pongjantharasatien, K.;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • 제53권3호
    • /
    • pp.265-270
    • /
    • 2015
  • Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and ${\alpha}$-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and ${\alpha}$-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.

Performance Evaluation of Biozentech Malaria Scanner in Plasmodium knowlesi and P. falciparum as a New Diagnostic Tool

  • Firdaus, Egy Rahman;Park, Ji-Hoon;Muh, Fauzi;Lee, Seong-Kyun;Han, Jin-Hee;Lim, Chae-Seung;Na, Sung-Hun;Park, Won Sun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제59권2호
    • /
    • pp.113-119
    • /
    • 2021
  • The computer vision diagnostic approach currently generates several malaria diagnostic tools. It enhances the accessible and straightforward diagnostics that necessary for clinics and health centers in malaria-endemic areas. A new computer malaria diagnostics tool called the malaria scanner was used to investigate living malaria parasites with easy sample preparation, fast and user-friendly. The cultured Plasmodium parasites were used to confirm the sensitivity of this technique then compared to fluorescence-activated cell sorting (FACS) analysis and light microscopic examination. The measured percentage of parasitemia by the malaria scanner revealed higher precision than microscopy and was similar to FACS. The coefficients of variation of this technique were 1.2-6.7% for Plasmodium knowlesi and 0.3-4.8% for P. falciparum. It allowed determining parasitemia levels of 0.1% or higher, with coefficient of variation smaller than 10%. In terms of the precision range of parasitemia, both high and low ranges showed similar precision results. Pearson's correlation test was used to evaluate the correlation data coming from all methods. A strong correlation of measured parasitemia (r2=0.99, P<0.05) was observed between each method. The parasitemia analysis using this new diagnostic tool needs technical improvement, particularly in the differentiation of malaria species.

Apical membrane antigen-1 (AMA-1) gene sequences of re-emerging Plasmodium vivax in South Korea

  • Han, Eun-Taek;Park, Jae-Hwan;Shin, Eun-Hee;Choi, Min-Ho;Oh, Myoung-Don;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제40권3호
    • /
    • pp.157-162
    • /
    • 2002
  • Plasmodium vivax malaria re-emerged in South Korea in 1993, and epidemics continue since then. We examined genetic variation in the region encompassing the apical membrane antigen-1 (PvAMA-1) of the parasites by DNA sequencing of the 22 re-emerging p. vivax isolates. The genotype of the PvAMA-1, which was based on sequence data previously reported for the polymorphic regions, showed that two haplotypes were present at one polymorphic site. Compared with reported data, the two types, SKOR type I and type II, were similar to Chinese CH- l0A and CH-05A isolates, respectively. Thus, the present study showed that two genotypes of AMA-1 genes coexist in the re-emerging Korean P. vivax.

Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates

  • Kho, Weon-Gyu;Chung, Joon-Yong;Sim, Eun-Jeong;Kim, Dong-Wook;Chung, Woo-Chul
    • Parasites, Hosts and Diseases
    • /
    • 제39권2호
    • /
    • pp.143-150
    • /
    • 2001
  • The present study was designed to investigate polymorphism in Duffy binding protein (DBP) gene of Plasmodium vivax isolates of Korea. Thirty samples were obtained from P. vivax patients in Yonchon-gun, Kyonggi-do in 1998. The PCR products of the samples were subjected to sequencing and hybridization analyses of the regions II and IV of P. vivax DBP gene. Two genotypes, SK-1 and SK-2, were identified on the basis of amino acid substitution and deletion. The genotype of 10 isolates was SK-1 and that of 20 isolates was SK-2. Most of the predicted amino acids in the region ll of DBP gene were conserved between the Korean isolates and Belem strain except for 4-5 amino acid substitutions. In the region W of DBP, a 6-bp insert that was shown in the Sal-1 allele type was found in SK-1, and a 27-bp insert that was shown in the Papua New Guinea allele type was found in SK-2. In conclusion, the present findings suggest that two genotypes of P. vivax coexist in the endemic area of Korea.

  • PDF

Appropriate Time for Primaquine Treatment to Reduce Plasmodium falciparum Transmission in Hypoendemic Areas

  • Wilairatana, Polrat;Krudsood, Srivicha;Tangpukdee, Noppadon
    • Parasites, Hosts and Diseases
    • /
    • 제48권2호
    • /
    • pp.179-182
    • /
    • 2010
  • Artemesinin-combination therapies (ACT) for falciparum malaria reduce gametocyte carriage, and therefore reduce transmission. Artemisinin derivatives will act against only young gametocytes whereas primaquine acts on mature gametocytes which are present usually in the circulation at the time when the patient presents for treatment. Both artemisinin derivatives and primaquine have short half-lives, less than 1 hr and 7 hr, respectively. Therefore, asexual parasites or young gametocytes remain after completed ACT. A single dose of primaquine (0.50-0.75 mg base/kg) at the end of ACT can kill only mature gametocytes but cannot kill young gametocytes (if present). Remaining asexual forms after completion of ACT course, e.g., artesunate-mefloquine for 3 days, may develop to mature gametocytes 7-15 days later. Thus, an additional dose of primaquine (0.50-0.75 mg base/kg) given 2 weeks after ACT completion may be beneficial for killing remaining mature gametocytes and contribute to more interruption of Plasmodium falciparum transmission than giving only 1 single dose of primaquine just after completing ACT.

Immune Responses of NIH Mice Infected with Avirulent and Virulent Strains of Plasmodium chabaudi adami Single and Mixed Infections

  • Namazi, M.J.;Phillips, R.S.
    • Parasites, Hosts and Diseases
    • /
    • 제48권1호
    • /
    • pp.23-33
    • /
    • 2010
  • An understanding of the nature of the immune response to asexual erythrocytic stages of malaria parasites will facilitate vaccine development by identifying which responses the vaccine should preferentially induce. The present study examined and compared the immune responses of NIH mice in either single or mixed infections with avirulent (DK) or virulent (DS) strains of Plasmodium chabaudi adami using the ELISA test for detecting and measurement of cytokines and antibody production. In both single and mixed infections, the study showed that both cell- and antibody-mediated responses were activated. In all experiments, an early relatively high level of IFN-$\gamma$ and IgG2a during the acute phase of the infection, and later elevation of IL-4 and IgG1, suggested that there was a sequential Th1/Th2 response. However, in the avirulent DK strain infection a stronger Th1 response was observed compared to the virulent DS strain-infection or in mixed infections. In the virulent DS infection, there was a stronger Th2 response compared to that in the DK and mixed infections. The faster proliferation rate of the virulent DS strain compared to the DK strain was also evident.

Genetic diversity in merozoite surface protein(MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran

  • Heidari Aliehsan;Keshavarz Hossein;Rokni Mohammad B.;Jelinek Tomas
    • Parasites, Hosts and Diseases
    • /
    • 제45권1호
    • /
    • pp.59-63
    • /
    • 2007
  • Merozoite surface protein-1(MSP-1) and merozoite surface protein-2(MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorph isms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.