• Title/Summary/Keyword: plasmid copy number

Search Result 72, Processing Time 0.017 seconds

Identification and Functional Analysis of Escherichia coli RNase E Mutants (Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석)

  • Shin, Eun-Kyoung;Go, Ha-Young;Kim, Young-Min;Ju, Se-Jin;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell and expression of N-terminal domain consisted of 1-498 amino acids (N-Rne) is sufficient to support normal cellular growth. By utilizing these properties of RNase E, we developed a genetic system to screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that lead to various phenotypes. Using this system, we identified three kinds of mutants. A mutant N-Rne containing amino acid substitution in the S1 domain (I6T) of the protein was not able to support survival of E. coli cells, and another mutant N-Rne with amino acid substitution at the position 488 (R488C) in the small domain enabled N-Rne to have an elevated ribonucleolytic activity, while amino acid substitution in the DNase I domain (N305D) only enabled N-Rne to support survival of E. roli cells when the mutant N-Rne was over-expressed. Analysis of copy number of ColEl-type plasmid revealed that effects of amino acid substitution on the ability of N-Rne to support cellular growth stemmed from their differential effects on the ribonucleolytic activity of N-Rne in the cell. These results imply that the genetic system developed in this study can be used to isolate mutant RNase E with various phenotypes, which would help to unveil a functional role of each subdomain of the protein in the regulation of RNA stability in E. coli.

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.