• Title/Summary/Keyword: plasma treatment

Search Result 3,064, Processing Time 0.034 seconds

Incineration Technology of Bone Waste Using Thermal Plasma (열 플라즈마를 이용한 뼈 폐기물 소각 기술)

  • Kim, Woo-Hyung;Kim, Bong-Soo;Han, Sang-Won;Ki, Ho-Beom;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.15-19
    • /
    • 2006
  • The meat consumption produces a lot of bone waste everyday. Dumping bone waste without treatment results into environmental hazards. Conventional treatment by pyrolysis is slow, inefficient and produces hazardous by-products. In the work, an investigation of bone waste incinerated using thermal plasma technology is presented. A high temperature arc plasma torch operated at 33 kW was employed for the experiments. Bone waste was incinerated to remove the infectious organic matter and to vitrify the inorganic matter using plasma torch. Bone waste was reduced its 2/3 weight after the treatment. The process was highly efficient, economical, convenient, and fuel free. This method could be used as an alternative method for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  • PDF

Manufacturing of High Quality Coated Paper using Environmental Friendly Plasma Technology (I) - Surface treatment of base paper by different voltages - (친환경 플라즈마 기술을 이용한 고품질 인쇄용지 제조 (제1보) - 전압의 변화에 따른 도공원지 표면처리 -)

  • Shin, Dong-Joon;Kim, Sun-Kyung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.55-59
    • /
    • 2011
  • Atmospheric plasma technology was utilized in order to modify surface characteristics of base paper for coating. Argon(Ar) and oxygen(O2) gases were used. It was found that contact angle of a water droplet was decreased with increasing voltage during plasma treatment, meaning that the hydrophilicity of paper surface was increased. On the other hand, the physical properties like roughness and optical properties such as gloss, brightness and opacity were not influenced by the plasma treatment. In conclusion, atmospheric plasma technology can be utilized to control hydrophilicity of paper surface without affecting physical properties of the paper.

Effect of Hydrogen Plasma Treatment on the Photoconductivity of Free-standing Diamond Film (다이아몬드막의 광전도성에 관한 수소 플라즈마 표면 처리의 효과)

  • Sung-Hoon, Kim
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.337-350
    • /
    • 1999
  • Thick diamond film having ~700${\mu}{\textrm}{m}$ thickness was deposited on polycrystalline molybdenum (Mo) substrate using high power (4kW) microwave plasma enhanced chemical vapor deposition (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconductivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Effect of hydrogen plasma treatment on the photoconductivity of free-standing diamond film

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.441-445
    • /
    • 1999
  • Thick diamond film having $~700\mu\textrm{m}$ thickness was deposited on polycrystalline molybdenum(Mo) substrate using high power (4 kW) microwave plasma-enhanced chemical vapor depostion (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconcuctivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

The Effect of Low Temperature Plasma on the Properties of Foam (저온플라즈마 처리가 발포체의 특성에 미치는 영향)

  • Park, Cha-Cheol;Kim, Ho-Jung
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.36-41
    • /
    • 2005
  • The effects of low temperature plasma treatment on the properties of three types of foams, polyurethane(PU), injection phylon(IP), and phylon(PH) that used for footwear mid-sole were examined. The change of surface properties of foams were characterized by electron scanning microscope, contact angle measurement, and universal testing machine. Adhesion was tested by T-peel tests of plasma treated foams/polyurethane adhesive joints. The contact angle of three types of foams were decreased dramatically with the plasma treatment time, specifically noticeable in the case of phylon(Ph). It has shown the relationship with the contact angle of phylon(PH) and the distance between electrode and samples. The peel strength of foams were increased with the increase of plasma treatment time.

Surface Characterization and Morphology in Ar-Plasma-Treated Polypropylene Blend

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.886-893
    • /
    • 2009
  • Surface modifications using a radio frequency Ar-plasma treatment were performed on a polypropylene (PP) blend used for automotive bumper fascia. The surface characterization and morphology were examined. With increasing aging time, there was an increase in wettability, oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O) due to oxidation, the amount of tale, and bearing depth and roughness on the PP surface, while there was a decrease in the number of hydrocarbon groups (i.e., C-C and C-H). AFM indicated that the Ar-plasma-treatment on a PP blend surface transforms the wholly annular surface into a locally dimpled surface, leading to an improvement in wettability. SEM showed that the PP layer observed in the non-plasma-treated sample was removed after the Ar-plasma treatment and the rubber particles were exposed to the surface. The observed surface characterization and morphologies are responsible for the improved wettability and interfacial adhesion between the PP blend substrate and bumper coating layers.

Development of an advanced atmospheric pressure plasma source with high spatial uniformity and selectiveness for surface treatment

  • Im, Yu-Bong;Choe, Won-Ho;Lee, Seung-Hun;Han, U-Yong;Lee, Jong-Hyeon;Lee, Sang-Gyun;Ha, Jeong-Min;Kim, Jong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.176-177
    • /
    • 2016
  • In the last few decades, attention toward atmospheric pressure plasma (APP) has been greatly increased due to the numerous advantages of those applications, such as non-necessity of high vacuum facility, easy setup and operation, and low temperature operation. The practical applications of APP can be found in a wide spectrum of fields from the functionalization of material surfaces to sterilization of medical devices. In the secondary battery industry, separator film has been typically treated by APP to enhance adhesion strength between adjacent films. In this process, the plasma is required to have high stability and uniformity for better performance of the battery. Dielectric barrier discharge (DBD) was usually adopted to limit overcurrent in the plasma, and we developed the pre-discharge technology to overcome the drawbacks of streamer discharge in the conventional DBD source which makes it possible to produce a super-stable plasma at atmospheric pressure. Simulations for the fluid flow and electric field were parametrically performed to find the optimized design for the linear jet plasma source. The developed plasma source (Plasmapp LJPS-200) exhibits spatial non-uniformity of less than 3%, and the adhesion strength between the separator and electrode films was observed to increase 17% by the plasma treatment.

  • PDF

A Study on the Plasma Nitriding Application for the Durability Improvement of the Exhaust Decoupler (배기계 디커플러의 내구 향상을 위한 플라즈마 질화에 관한 연구)

  • Hur, Deog-Jae;Kim, Sang-Sik;Chung, Tae-Jin;Kim, Do-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • This paper described the process of improving durability performance of the exhaust decoupler by the plasma nitriding. The properties of plasma nitriding treatment of AIS1304 stainless steel were tested using specimens before applying plasma nitriding to a mesh ring. In order to analyses the effect of plasma nitriding treatment on the mechanical properties, SEM(Scanning Electron Microscopes), roughness and hardness tester were used. Based on specimen plasma nitriding, we could find appropriate condition for application to the mesh ring of decoupler. To confirm the improved durability performance, we compared the number of cycles, which reaches to fracture, of the nitrided decoupler and that of the unnitrided decoupler by the bending cyclic test. In this test, the durability and wear resistance of the mesh ring are significantly improved by plasma nitriding treatment.

Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment (Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상)

  • Ji Young-Yeon;Kim Sang-Sik
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.391-396
    • /
    • 2006
  • It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity hydrophobicity and hydrophilicity. Using plasma treatment, interfacial pro-perty can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66) /polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hvdrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of $50.03 mJ/m^2$ with the lowest contact angle of $14^{\circ}$ was obtained at plasma process power of 100 W, treatment time of 2 min and $Ar/O_2$ gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).

Influence of CrO3 Sealing Treatment on Properties of Plasma Sprayed Al2O3 Coating (플라즈마 용사 Al2O3 코팅의 특성에 미치는 CrO3 봉공처리의 영향)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Kwon, Jeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.160-167
    • /
    • 2011
  • Plasma sprayed ceramic coatings inherently contain pores and usually also cracks. Post-treatment of the plasma sprayed coatings is a way to close the connected pores and cracks. In this study, post-sealing treatment in plasma sprayed $Al_2O_3$ coatings was employed to overcome the reduction of coating properties. $Al_2O_3$ plasma thermal spray coating was made on aluminum alloys plate, $CrO_3$ post coating and heat treatment at $550^{\circ}C$ was carried out in order for final $Cr_2O_3$ to be saturated through phase transformation. Chromia sealing began at the fine defect in coated microstructure, while larger pores were permeated later. The increase in concentration and treatment frequency of sealing solution resulted in the decrease of porosity of coating layer, while cracks occurred partially after the third treatment. After twice treatment of 10M $CrO_3$ solution, microhardness and breakdown voltage of $Al_2O_3$ coatings were found to increase by ${\fallingdotseq}$ 50% and ${\fallingdotseq}$ 390% respectively than without post-treatment.