• Title/Summary/Keyword: plasma spray

Search Result 336, Processing Time 0.043 seconds

Spray Dried Animal Plasma as an Alternative to Antibiotics in Weanling Pigs - A Review -

  • Torrallardona, David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.131-148
    • /
    • 2010
  • Piglet health at weaning is compromised due to several stress factors. Following the ban of antibiotic growth promoters new alternatives are required to control these problems. This paper reviews the evidence available for the use of spray dried animal plasma (SDAP) as an alternative to antibiotics in weaning pigs. Data from 75 trials in 43 publications involving over 12,000 piglets (mean values) have been used to calculate the performance responses of piglets according to several factors including SDAP origin, protein source from the control diet being replaced, dose of inclusion, age and weight of the piglets at weaning, sanitary conditions and simultaneous use or not of medication. Although the use of SDAP of all origins results in positive responses, it appears that plasma from porcine origin has the highest efficacy. This could be explained by the specificity of its IgG against porcine pathogens. During the first week post-weaning the response to plasma appears to increase with the inclusion dose, although over the two-week pre-starter period an optimal inclusion level of 4-8% is suggested. SDAP improves feed efficiency more markedly when the piglets are challenged with an experimental infection or when feed does not contain medication, which could be indicative of a lower expenditure of energy and nutrients to build an immune response against the challenge. There is evidence supporting that SDAP IgG and other bioactive substances therein prevent the binding of pathogens to the gut wall and reduce the incidence of diarrhoea in the post-weaning phase. Overall, plasma can be postulated as an excellent alternative to in-feed antimicrobials for piglets in the post-weaning phase.

Study on the Wear Mechanism of the Plasma Spray Coatings (용사층의 마모 기구에 관한 연구)

  • Yun, U-Saeng;Song, Yo-Seung;Byeon, Eung-Seon;Lee, Gu-Hyeon;No, Byeong-Ho
    • 연구논문집
    • /
    • s.25
    • /
    • pp.193-205
    • /
    • 1995
  • Plasma spray coating technology is essential for the microsemiconductor processes based on the electronic and computer industry, and extend gradually the range of application for up-to-date industry such as diesel engine and gas turbine components. These thechonoogies may be applied to the components requiring wear-resistance, heat resistance, fatigue-resistance, and corrosion-resistance. In this research, plasma spray technology was selected for the wear resistant coatings as the most proper technique. The final goal of this study is to improve the wear resistance through establishment of coating soft-ware, and basic research for industrialization of the technology concerned.

  • PDF

Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I) (AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

Fabrication and characteristics of suspension-plasma-sprayed yttrium oxide coatings (서스펜션 플라즈마 스프레이 코팅법을 이용한 이트리아 코팅막 제조와 특성)

  • Kim, Min Suk;So, Sung Min;Kim, Hyung Soon;Park, Seong Hwan;Ham, Young Jae;Jeon, Min Seok;Kim, Kyoung Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2019
  • The suspension plasma spraying is a modification of conventional plasma spray techniques that has been developed to overcome the challenge of using fine particles in plasma spray processes. In this study, microstructure developments and mechanical property of yttrium oxide (Y2O3) coatings prepared by the suspension plasma spray coating technique have been investigated to determine the effect of processing parameters including plasma gun current and total gas flow. The results showed that a highly dense Y2O3 coating having low porosity of 0.2 vol% without any lamellar structures can be achieved at the optimum condition of gun current 200 A and total gas flow 220 L/min.

Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method (플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.172-180
    • /
    • 2021
  • In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC (열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구)

  • Park, Kwang-Yeon;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

Wear Characteristics of $Al_{2}O_{3}\;and\;TiO_{2}$ Coating Materials by Plasma Spray ($Al_{2}O_{3}$$TiO_{2}$를 플라즈마 용사한 코팅재의 마모 특성)

  • Kim, S.I.;Kim, H.G.;Kim, G.S.
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.282-289
    • /
    • 2006
  • This paper is to investigate the wear behaviors of two type ceramics, $Al_{2}O_{3}\;and\;TiO_{2}$, by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load and sliding velocity is 0.2 m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope.

Microstructure and Properties of Plasma Spray Coatings Prepared from Ti-Zr-Ni Quasicrystalline Powders

  • Seok, H.K.;Kim, Y.C.;Prima, F.;Fleury, E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.53-54
    • /
    • 2006
  • Ti-Zr-Ni coatings deposited by low vacuum plasma spray technique consisted of nanometer-sized $W-Ti_{50}Zr_{35}Ni_{15}$ 1/1 cubic approximant and TiZrNi Laves phases as well as a low volume fraction of $ZrO_2$ phase. The shift of composition during deposition of the quasicrystalline powders and the presence of $ZrO_2$ phases are believed to be responsible for the reduced corrosion performances evaluated by means of electrochemical tests in a Hanks' Balance Salt Solution at $37^{\circ}C$.

  • PDF