• Title/Summary/Keyword: plasma membrane ATPase

Search Result 59, Processing Time 0.026 seconds

Expression of Plasma Membrane $H^ +-ATPase $ in the Roots of Plants Under Low Temperature (바이오센서에 의한 뿌리 원형질막에서의 $H^ +-ATPase $의 활성측정)

  • ;;;Etsuo Watanabe
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.59-62
    • /
    • 2002
  • The enzyme sensor for ATPase activity consisted of an immobilized membrane of two enzymes, purine nucloside phosphorylase (NP) and xanthine oxidase (XOD), and oxygen electrode. The $H^ +-ATPase $ rate of the plasma membranes increased by low root temperature. A cucumber and a pumpkin plasma membrane $H^ +-ATPase $$ activities measured by the proposed sensor system were in good agreement with the results obtained by a conventional UV spetrometer assay. One cycle of assay could be completed within 3 minutes.

Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi (중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용)

  • 이상화;김창진
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

Purification and Characterization of ATPase and Phosphatase of Light Membrane Vesicles Isolated from Cucurbita pepo (Cucurbita pepo에서 분리한 Light Membrane Vesicle의 ATPase와 Phosphatase의 정제 및 특성)

  • 오승은
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.325-332
    • /
    • 1990
  • Light membrane vesicles were isolated from the zucchini hypocotyl by floatation on ficoll density gradients and the proteins were solubilized with Triton X100. Three ATP-hydrolyzing enzymes were partially purified by ion-exchange and gel filtration chromatography and isoelectric focusing. There are plasma membrane-type ATPase whose activity was inhibited by vanadate but not by nitrate, tonoplast-type ATPase which was sensitive to nitrate but insensitive to vanadate and one having a phosphatase activity with a pI value different from that of an acid phosphatase. A fraction was obtained after DEAE-ion-exchange chromatography crossreacting with polyclonal antibodies against Ca2+ -ATPase from human erythrocytes.

  • PDF

Identification of Phospholipase C Activated by $GTP{\gamma}S$ in Plasma Membrane of Oat Cell

  • Kim, Hyae-Kyeong;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.387-391
    • /
    • 1995
  • In order to investigate whether phospholipase C (PLC) activity in oat celIs is regulated by Gprotein, we have characterized PLC in plasma membranes of oat tissues. To identify the purified plasma membrane, $K^+$-stimulated, $Mg^{2+}$-dependent ATPase activity was measured. The activity of ATPase was shown to be proportional to the concentration of membrane protein. To examine the PLC activity regulated by G-protein, we used the inside-out and outside-out plasma membrane mixture isolated from the oat cells. The plasma membrane mixture showed higher PLC activity than the one of the outside-out plasma membrane. This suggests that PLC activity is located at the cytoplasmic surface of plasma membrane. PLC activity in plasma membrane mixture was dependent on $Ca^{2+}$ with maximum activity at 100 ${\mu}m$ $Ca^{2+}$ and it was inhibited by 1 mM EGTA. Using Sep-pak $Accell^{TM}$ Plus QMA chromatography, we found that inositol 1,4,5-trisphosphate ($IP_3$) was produced in the presence of 10 ${\mu}m$ $Ca^{2+}$. The PLC activity in the membrane was enhanced by an activator of G-protein ($GTP{\gamma}S$) and not by an inhibitor ($GDP{\beta}S$). This indicates that a G-protein is involved in the activation of PLC in the plasma membrane of oat cells.

  • PDF

Effect of Glucose, Its Analogs and Some Amino Acids on Pre-steady State Kinetics of ATP Hydrolysis by PM-ATPase of Pathogenic Yeast (Candida albicans)

  • Bushra, Rashid;Nikhat, Manzoor;M., Amin;Luqman A., Khan
    • Animal cells and systems
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • Fast kinetics of transient pH changes and difference spectrum formation have been investigated following mixing of ADP/ATP with partially purified plasma membrane PM-ATPase of the pathogenic yeast Candida albicans in the presence of five nutrients: glucose, glutamic acid, proline, lysine, and arginine and two analogs of glucose: 2-deoxy D-glucose and xylose. Average $H^+$- absorption to release ratio, indicative of population of ATPase undergoing complete hydrolytic cycle, was found to be 0.27 for control. This ratio varied between 0.25 (proline) to 0.36 (arginine) for all other compounds tested, except for glucose. In the presence of glucose, $H^+$- absorption to release ratio was exceptionally high (0.92). While no UV difference spectrum was observed with ADP, mixing of ATP with ATPase led to a large conformational change. Exposure to different nutrients restricted the magnitude of the conformational change; the analogs of glucose were found to be ineffective. This suppression was maximal in the case of glucose (80%); with other nutrients, the magnitude of suppression ranged from 40-50%. Rate of $H^+$- absorption, which is indicative of E~P complex dissociation, showed positive correlation with suppression of conformational change only in the case of glucose and no other nutrient/analog. Mode of interaction of glucose with plasma membrane $H^+$-ATPase thus appears to be strikingly distinct compared to that of other nutrients/analogs tested. The results obtained lead us to propose a model for explaining glucose stimulation of plasma membrane $H^+$-ATPase activity.

Lanthanum-induced Inhibitions of Microsomal $H^+-ATPase$ in the Roots of Tomato ($La^{3+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성저해)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.84-89
    • /
    • 2003
  • In order to find a chemical agent which is able to modulate the activity of $H^+-ATPase$, microsomal preparation was obtained from the root tissue of tomato plant and the effect of $La^{3+}$ was measured. The activities of plasma and vacuolar membrane $H^+-ATPase$ were analyzed by the inhibited activities using their specific inhibitors, vanadate and $NO_3-$, respectively. $La^{3+}$ inhibited microsomal ATPases in a dose-dependent manner and the inhibitory effect of $La^{3+}$ was suppressed by both vanadate and $NO_3-$, implying that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPase$. The Ki. values of $La^{3+}$which inhibit 50% of the activities of plasma and vacuolar membrane $H^+-ATPase$ were 57 and $78\;{\mu}M$, respectively. The $H^+-ATPase$ of the leaky microsomes made by the treatment of Triton X-100 were also inhibited by $La^{3+}$, suggesting that $La^{3+}$ directly inhibits both enzymes. Meanwhile, the inhibitory effect of $La^{3+}$ was decreased by increasing the concentration of ATP, The effect of ATP was also concentration-dependent and 7 mM ATP completely removed the inhibitory effect of $La^{3+}$. These results imply that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPases$ by decreasing the binding affinity of ATP and $La^{3+}$ can be used to control the activity or root $H^+-ATPases$.

Phosphorylation, 14-3-3 protein and photoreceptor in blue light response of stomatal guard cells

  • Toshinori Kinoshita;Takashi Emi;Michio Doi;Shimazaki, Ken-ichiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.335-337
    • /
    • 2002
  • Blue light (BL) induces stomatal opening through activation of H$^{+}$ pump, which creates electrical gradient across the plasma membrane for $K^{+}$ uptake into guard cells. The pump is the plasma membrane H$^{+}$ -ATPase and is activated via phosphorylation of the C-terminus with concomitant binding of the 14-3-3 protein. The opening is initiated by the perception of BL through phototropin (phot), which are recently identified as BL receptors in stomatal guard cells. In this study, we provide the biochemical evidence for phots as BL receptors in stomatal guard cells. vfphot was phosphorylated reversibly by BL, and phosphorylation levels of vfphot increased earlier than those of the plasma membrane W-ATPase. BL-dependent phosphorylations of vfphot and H$^{+}$-ATPase showed similar fluence dependency. Staurosporin, an inhibitor of serine/threonine protein kinase, and diphenyleneiodonium chloride (DPI), an inhibitor of flavoprotein, inhibited BL-dependent phosphorylations of vfphot and H$^{+}$ -ATPase. These results indicate that vfphot acts as a BL-receptor mediating stomatal opening.l opening.

  • PDF

Effect of Low Temperature upon the Fatty Acid Composition Plasma Membrane of Canola (저온 환경이 Canola 원형질막의 Fatty Acid 구성에 미치는 영향)

  • Kwon, Sung-Hwan;Plank, D.W.;Jeon, Hee;Kim, Jae-Chul
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.136-143
    • /
    • 1995
  • Using a PEG- dextran two phase partition method, plasma and intracellular membrane separated from microsomal membrane of canola (Brassica napus) leaves have been fractionated by centrifugation. $K^{+}$- ATPase specific activity in the plasma membrane (U$_2$ phase) of plants grown at $25^{\circ}C$ and 1$0^{\circ}C$ were 6.6 and 4.6 times, respectively that of the microsomal membrane. Plasma membrane had a lower cytochrome- c- oxidase specific activity than the microsomal membrane or intracellular membrane, while intracellular membrane (L$_2$ phase) had a high cytochrome-c- oxidase but little $K^{+}$- ATPase specific activity. The plasma membrane of canola grown at 1$0^{\circ}C$ had higher 18:3 to 18:2 (linolenic to linoleic acid) ratio (29.2% ) and higher degree of unsaturation than that grown at $25^{\circ}C$ The double bond index of plasma membrane from canola grown at 1$0^{\circ}C$ increased by 8.9% relative to canola grown at $25^{\circ}C$. Similar, intracellular membrane increased by 19.7% at 1$0^{\circ}C$. Canola grown at 1$0^{\circ}C$ was lower in chlorophyll contents (17.3%) than that grown at $25^{\circ}C$. These changes in fatty acid unsaturation were attributable largely to change in Cl8 fatty acid, with major changes occurring in linolenic acid (18 :3) which might have a physiological role of membrane to adaptation on low temperature.ure.

  • PDF

$Na^+-K^+$ ATPase: Regulation by Signal Transduction Pathways in Cardiac Myocytes

  • Lee, Chin-Ok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.9-11
    • /
    • 2002
  • Plasma membrane Na$^{+}$-K$^{+}$ ATPase (pump) is an essential component to maintain asymmetrical ion distribution across cell membrane. The Na$^{+}$-K$^{+}$ ATPase was discovered by Jens C. Skou in 1957 and since then physiological and biochemical properties of the enzyme have been extensively studied. Jens C. Skou was awarded the 1997 Nobel Prize in chemistry for his discovery of the Na $^{+}$ - $K^{+}$ ATPase.(omitted)

  • PDF

The Effect of Carbachol on $Na^+,\;K^+-ATPase$ Activity in Rabbit Erythrocyte Membrane (가토 적혈구 세포막 $Na^+,\;K^+-ATPase$활성에 미치는 Carbachol의 영향)

  • Kim, Ok-Jin;Kim, Nak-Doo;Park, Chan-Woong;Hong, Sa-Ack
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.69-77
    • /
    • 1982
  • $Na^+,\;K^+-ATPase$ is a component of plasma membrane in almost all animal cell, and maintains ionic distribution and membrane potential of normal cell. In the mechanism of adrenergic transmission, it is relatively well known that drug-receptor combination leads to stimulate adenylate cyclase and so on. In the cholinergic transmisison, the mechanism is not well known but is simply interpreted as the change of membrane permeability results from acetylcholine receptor interaction. To study the relationship between cholinergic transmission and membrane $Na^+,\;K^+-ATPase$, the effect of carbachol on $Na^+,\;K^+-ATPase$ activity in rabbit erythrocyte membrane is studied. The results are summarized as follows. 1) Total ATPase, $Mg^{+2}-ATPase$ and $Na^+,\;K^+-ATPase$ of rabbit erythrocyte membrane show maximum activities at 1mM of tris-ATP. 2) Total ATPase activity tends to increase when treated with carbachol $(10-^{-9}M-10^{-3}M)$. 3) The $Mg^{+2}-ATPase$ activity also tends to increase when treated with carbachol $(10-^{-9}M-10^{-3}M)$. 4) The $Na^+,\;K^+-ATPase$ activity is inhibited when treated with carbachol $(10-^{-9}M-10^{-7}M)$. It is suggested that the inhibition of $Na^+,\;K^+-ATPase$ by cholinergic drugs may be considered as one part of mechanism of cholinergic transmission.

  • PDF