• Title/Summary/Keyword: plasma bubbles

Search Result 31, Processing Time 0.022 seconds

The Morphology of Equatorial Plasma Bubbles - a review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

MEASUREMENT AND SIMULATION OF EQUATORIAL IONOSPHERIC PLASMA BUBBLES TO ASSESS THEIR IMPACT ON GNSS PERFORMANCE

  • Tsujii, Toshiaki;Fujiwara, Takeshi;Kubota, Tetsunari;Satirapod, Chalermchon;Supnithi, Pornchai;Tsugawa, Takuya;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.607-613
    • /
    • 2012
  • Ionospheric anomaly is one of the major error sources which deteriorate the GNSS performance. In the equatorial region, effects of the ionospheric plasma bubbles are of great interest because they are pretty common phenomena, especially in the period of the high solar activity. In order to evaluate the GNSS performance under circumstance of the bubbles, an ionospheric scintillation monitor has been developed and installed in Bangkok, Thailand. Furthermore, a model simulating the ionospheric delay and scintillation due to the bubbles has been developed. Based on these developments, the effects of the simulated plasma bubbles are analyzed and their agreement with the real observation is demonstrated. An availability degradation of the GPS ground based augmentation system (GBAS) caused by the bubbles is exampled in details. Finally, an integrated GPS/INS approach based on the Doppler frequency is proposed to remedy the deterioration.

PLASMA BLOB EVENTS OBSERVED BY KOMPSAT-1 AND DMSP F15 IN THE LOW LATITUDE NIGHTTIME UPPER IONOSPHERE

  • 박재흥;이재진;이은상;민경욱
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • We report the plasma blob events that were observed from KOMPSAT-1 (2250 LT, 685-km altitude) and from DMSP F15 (2130 LT,840-km altitude) in the low-latitude ionosphere. The global distribution of blobs showed a season-longitudinal dependence similar to the distribution of the equatorial plasma bubbles, although they were observed along the ${\pm}$15 dip latitudes. The blobs drifted upward relative to the ambient plasmas, and the electron temperatures and H+ proportions were lower within the blobs compared to those in the background. These characteristics of the plasma blobs are very similar to the characteristics of the equatorial plasma bubbles. Then, we suggest that the blobs were originated from the lower altitudes by the mechanism that drives an upward drift of the plasma bubbles. The blob events did not occur in a correlated way with the magnetic activity or daily variation of the solar activity.

  • PDF

The Occurrence Climatology of Equatorial Plasma Bubbles: A Review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.23-33
    • /
    • 2022
  • Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms.

Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r < ${\sim}7\;R_E$. For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on $pV^{5/3}$, where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, $pV^{5/3}$, decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

Low Latitude Plasma Blobs: A Review

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In recent years, there has been renewed activity in the study of local plasma density enhancements in the low latitude F region ionosphere (low latitude plasma blobs). Satellite, all-sky airglow imager, and radar measurements have identified the characteristics of these blobs, and their coupling to Equatorial Plasma Bubbles (EPBs). New information related to blobs has also been obtained from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. In this paper, we briefly review experimental, theoretical and modeling studies related to low latitude plasma blobs.

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation (고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.

The One-to-one Comparison of the Pre-reversal Enhancement Characteristics with the Equatorial Plasma Bubble Occurrence using Multiple Satellite Data

  • Oh, S.J.;Kil, H.;Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.3-39
    • /
    • 2009
  • Equatorial Plasma Bubble (herafter, EPB) is a common feature in low-latitude F-region during the night time. Since EPB causes significant impacts on the satellite communication and navigation systems, its accurate forecast is highly demanded by the GNSS users. Thus, further understanding of these features and their configuration is a challenging issue in space weather studies. The day-to-day variability of the plasma bubble activity was investigated by analyzing the TIMED/GUVI, ROCSAT-1, DMSP, and CHAMP satellite data. The pre-reversal enhancement (PRE) is known as the most important single parameter for the onset of plasma bubbles but we do not know yet to what extent the day-to-day variability of the bubble activity can be attributed to the PRE. We obtained the magnitude of the PRE from ROCSAT-1 and the occurrence of bubbles in relation to the PRE was investigated by using the coincident observations of EPBs from TIMED/GUVI, DMSP, and CHAMP. By conducting one-to-one comparison of the PRE characteristics with the EPB occurrence we examined the role of the PRE in the onset of EPBs.

  • PDF

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.