• Title/Summary/Keyword: plasma bubble

Search Result 34, Processing Time 0.024 seconds

The Morphology of Equatorial Plasma Bubbles - a review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

The One-to-one Comparison of the Pre-reversal Enhancement Characteristics with the Equatorial Plasma Bubble Occurrence using Multiple Satellite Data

  • Oh, S.J.;Kil, H.;Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.3-39
    • /
    • 2009
  • Equatorial Plasma Bubble (herafter, EPB) is a common feature in low-latitude F-region during the night time. Since EPB causes significant impacts on the satellite communication and navigation systems, its accurate forecast is highly demanded by the GNSS users. Thus, further understanding of these features and their configuration is a challenging issue in space weather studies. The day-to-day variability of the plasma bubble activity was investigated by analyzing the TIMED/GUVI, ROCSAT-1, DMSP, and CHAMP satellite data. The pre-reversal enhancement (PRE) is known as the most important single parameter for the onset of plasma bubbles but we do not know yet to what extent the day-to-day variability of the bubble activity can be attributed to the PRE. We obtained the magnitude of the PRE from ROCSAT-1 and the occurrence of bubbles in relation to the PRE was investigated by using the coincident observations of EPBs from TIMED/GUVI, DMSP, and CHAMP. By conducting one-to-one comparison of the PRE characteristics with the EPB occurrence we examined the role of the PRE in the onset of EPBs.

  • PDF

Laser Acceleration of Electron Beams to the GeV-class Energies in Gas Jets

  • Hafz, Nasr A.M.;Jeong, Tae-Moon;Lee, Seong-Ku;Choi, Il-Woo;Pae, Ki-Hong;Kulagin, Victor V.;Sung, Jae-Hee;Yu, Tae-Jun;Cary, John R.;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • In a laser-plasma wakefield accelerator, the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal wave or plasma bubble in a way similar to the excitation of a wake wave behind a boat as it propagates on the water surface. Electric fields inside the plasma bubble can be several orders of magnitude higher than those available in conventional RF-based particle accelerator facilities which are limited by material breakdown. Therefore, if an electron bunch is properly phase-locked with the bubble's acceleration field, it can gain relativistic energies within an extremely short distance. Here, in the bubble regime we show the generation of stable and reproducible sub GeV, and GeV-class electron beams. Supported by three-dimensional particle-in-cell simulations, our experimental results show the highest acceleration gradients produced so far. Simulations suggested that the plasma bubble elongation should be minimized in order to achieve higher electron beam energies.

Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r < ${\sim}7\;R_E$. For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on $pV^{5/3}$, where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, $pV^{5/3}$, decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

Bubble occurrence and interhemispheric plasma transport

  • Park, Jaeheung;Lee, Jae-jin;Lee, Ensang;Min, Kyoung-Wook
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.72-72
    • /
    • 2004
  • We have compared here the seasonal average of the plasma density with the EPB occurrence in a given longitude sector, using KOMPSAT-1 and DMSP data. It could be evidenced on a global scale that the EPB occurrence was nearly anti-correlated with the poleward drift speed parallel to B-field, and with the degree of asymmetry of the latitudinal plasma distribution. But, the seasonal-longitudinal change of the asymmetry was different from what the current theory expected. (omitted)

  • PDF

태양 활동과 대서양 지역에서 발생하는 equatorial plasma bubble 사이의 상호 관계

  • 이재진;민경욱
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.31-31
    • /
    • 2003
  • Equatorial Plasma Bubble(EPB)은 적도 지역에서 Rayleigh-Taylor Instability에 의해 발생하는 이온층 플라즈마의 불안정성 현상으로, 주변의 플라즈마 밀도에 비해 좁은 영역에서 플라즈마 밀도가 급격하게 떨어지는 현상을 말한다. 지역적으로 보면, 겨울철에는 대서양 지역에서 집중적으로 발생하고 여름철에서는 태평양 지역에서 많이 관측된다. 이러한 불안정 현상은 단파 통신 장애를 유발할 수 있기 때문에 많은 연구 대상이 되어왔지만, 아직까지 태양 활동이나 지자기 변화에 의한 상호 연관성이 규명되지 못 하고 있다. 이것은 Rayleigh-Taylor Instability를 발생시키는 여러 인자들이 매우 복잡하게 관련되어 있기 때문인데, 본 연구에서는 특정 지역에서 발생하는 EPB에 한정하여 태양 활동과의 상호 연관성에 대해 분석하고자 하였다. 또한 단순한 발생 빈도에 대한 통계적인 처리가 아닌, EPB하나 하나에 대한 특성을 분석함으로써 EPB의 발생과 관련한 보다 명확한 분석이 가능하게 되었다. 분석에 필요한 data는 KOMPSAT-1의 Langmuir Probe(LP)에 의해 2000년에서 2001년 사이에 얻은 이온층의 전자 밀도를 사용하였는데, KOMPSAT-1의 LP는 같은 기간 활동한 다른 위성에 비해 좋은 시간 분해능을 가지고 있기 때문에 EPB의 통계 처리에 적당한 것으로 생각되었다.

  • PDF

Analysis of characteristics of discharge in liquid

  • Kim, Ju-Sung;Min, Boo-Ki;Hong, Young-June;Kang, Seong-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.209.2-209.2
    • /
    • 2016
  • Up to now, Plasma applications are thought as a leading technology in industrial, chemical and even medical and biological field. Especially, Due to direct discharge in liquid with reaction in ambient solution, plasma in liquid is useful plasma technology. Such as electro-surgery, water purification, radical generation for synthesis. For using those plasma applications efficiently, plasma characteristics should be understood in advance. But discharge in liquid is not much well-known about its characteristics. And plasma discharge in solution is difficult to generate and analysis due to electrolysis, vaporization and radical generation. So, We make stable plasma discharge in solution(saline 0.9%) without input gas. We also analyze new type of plasma source in thermal and electrochemical view. And we check characteristics of plasma in liquid. For example, plasma density and radical density(OH) with optical emission, thermal energy with thermometer, electrical energy with oscilloscope and so on. And we try to explain the bubble and plasma formation with circuit analysis.

  • PDF

The Occurrence Climatology of Equatorial Plasma Bubbles: A Review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.23-33
    • /
    • 2022
  • Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms.