• Title/Summary/Keyword: plasma assisted

Search Result 402, Processing Time 0.022 seconds

Analytical Method to Quantify Sodium Metasilicate in Shark Fins (샥스핀 가공 중 사용된 메타규산나트륨 분석)

  • Park, Se-Jong;Jang, Su-Jin;Choi, Jae-Chon;Kim, Meehye
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.145-148
    • /
    • 2015
  • According to the Korea Food Additives Code, sodium metasilicate is permitted for use as a filtering agent for edible oils and fats. Sodium metasilicate is currently used as a food additives to increase the weight of shark fins. In this study, we developed an analytical method to quantify sodium metasilicate in food. Sodium metasilicate content was estimated by measuring the moisture content, pH and silicon content of shark fins. Silicon content was analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES) following microwave-assisted digestion with $HNO_3$ (65%) and $H_2O_2$ (30%). Shark fin total silicon content was $7.17{\pm}8.92mg/kg$, while the soluble silicon content was $2.34{\pm}3.80mg/kg$. After soaking raw shark fin in an aqueous solution of sodium metasilicate, fin weight, pH and silicon content were measured. These results would be used as the basic information for shark fins safety management.

Risk Analysis of Inorganic Arsenic in Foods (식품 중 무기비소의 위해 분석)

  • Yang, Seung-Hyun;Park, Ji-Su;Cho, Min-Ja;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.227-249
    • /
    • 2016
  • Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has been withdrawn, while the EFSA panel suggested $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg\;b.w./day$ for cancers of the lung, skin and bladder, as well as skin lesions. Rice, seaweed and beverages are known as food being rich in inorganic arsenic. As(III) is the major form of inorganic arsenic in rice and anaerobic paddy soils, while most of inorganic arsenic in seaweed is present as As(V). The inorganic arsenic in food was extracted with solvent such as distilled water, methanol, nitric acid and so on in heat-assisted condition or at room temperature. Arsenic speciation analysis was based on ion-exchange chromatography and high-performance liquid chromatography equipped with atomic absorption spectrometry and inductively coupled plasma mass spectrometry. However, there has been no harmonized and standardized method for inorganic arsenic analysis internationally. The inorganic arsenic exposure from food has been estimated to range of $0.13{\sim}0.7{\mu}g/kg$ bw/day for European, American and Australian, and $0.22{\sim}5{\mu}g/kg$ bw/day for Asian. The maximum level (ML) for inorganic arsenic in food has established by EU, China, Australia and New Zealand, but are under review in Korea. Until now, several studies have conducted for reduction of inorganic arsenic in food. Inorganic arsenic levels in rice and seaweed were reduced by more polishing and washing, boiling and washing, respectively. Further research for international harmonization of analytical method, monitoring and risk assessment will be needed to strengthen safety management of inorganic arsenic of foods in Korea.