• Title/Summary/Keyword: plantation wood

Search Result 54, Processing Time 0.02 seconds

Postural Risk Assessment of Young Tree Tending Operations in for Managing Pinus Densiflora and Larix Kaempferi Plantations (소나무와 일본잎갈나무 조림지 관리를 위한 어린나무가꾸기의 작업 자세 위험도 분석)

  • Lee, Eun-Jai;Lee, Sang-Tae;Han, Sang-Kyun;Cho, Koo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.271-281
    • /
    • 2021
  • Pinus densiflora and Larix kaempferi forests not only extended the plantation management area but also cultivated to the sustainable wood supply chain during the last 5-years. These prescriptions are primarily done by manual operation activities, particularly in young tree tending. Two types of tending activities, brashing by brush cutter(BB) and pruning by pruning shear and saw(PP), were selected for the investigate of musculoskeletal disorders' level and postural risks using Ovako Working Posture Analysis System (OWAS). The postural risk indexes (BB and PP) ranged from 115 to 125 and 102 to 105, respectively. There is no significant difference between the species. The young tree tending operations had low postural risks. The results may be used as basic data to develop technical guideline for safe young trees.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Artificial Neural Network (인공신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup;Baek, Won-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1399-1414
    • /
    • 2018
  • Natural forests are un-manned forests where the artificial forces of people are not applied to the formation of forests. On the other hand, artificial forests are managed by people for their own purposes such as producing wood, preventing natural disasters, and protecting wind. The artificial forests enable us to enhance economical benefits of producing more wood per unit area because it is well-maintained with the purpose of the production of wood. The distinction surveys have been performed due to different management methods according to forests. The distinction survey between natural forests and artificial forests is traditionally performed via airborne remote sensing or in-situ surveys. In this study, we suggest a classification method of forest types using satellite imagery to reduce the time and cost of in-situ surveying. A classification map of natural forest and artificial forest were generated using KOMPSAT-3, 3A, 5 data by employing artificial neural network (ANN). And in order to validate the accuracy of classification, we utilized reference data from 1/5,000 stock map. As a result of the study on the classification of natural forest and plantation forest using artificial neural network, the overall accuracy of classification of learning result is 77.03% when compared with 1/5,000 stock map. It was confirmed that the acquisition time of the image and other factors such as needleleaf trees and broadleaf trees affect the distinction between artificial and natural forests using artificial neural networks.

Variation in Growth Characteristics of Pinus densiflora S. et Z. at Eight Experimental Plantations of Korea (8개(個) 시험지(試驗紙)에서 소나무 산지별(山地別) 생장특성(生長特性) 변이(變異))

  • Kim, Kyu Sick;Han, Young Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.119-127
    • /
    • 1997
  • Japanese red pines growing along the Taebaek mountains have been called "Kangsong" and considered to be superior in growth and wood quality. An attempt was made to determine whether their boundaries for planting may be expanded by testing their early growth at eight experimental plantations of the Republic of Korea. Seeds were collected from the six different natural populations including Uljin in Kyongbuk province. For the provenance test, they were planted in eight different regions including Taean in the spring of 1987. Experimental planting was a randomized complete block design with 3 replications. Height growth was measured at the ages of 2, 4, and 6 after planting, and the diameter at root collar at the age of 6 after planting. Significant variation in height growth was observed among the plantations. The height growth measured at the age of 6 after planting showed a positive correlation with the latitude of the test plantation, and the contents of phosphate, potassium and calcium in the soil. A negative correlation, however, was observed between the longitude of the test plantation and height growth. Ponghwa provenance appeared to be the best among the provenances in that the trees from the area grew 16% better in volume growth than the average of all the trees tested in the study, while the worst one was Kyongju from which trees grew 11% less than the average.

  • PDF

Anatomical Characteristics of Major Plantation Species Growing in Indonesia II (인도네시아산 주요 조림수종의 해부학적 특성 II)

  • Jang, Sa-Ra;Jang, Jae-Hyuk;Kim, Jong-Ho;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.635-645
    • /
    • 2014
  • The anatomical characteristics of eight major wood species planted in Indonesia were investigated to provide valuable information for their effective utilization. The growth-ring boundaries of Damar and Sumatran pine were indistinct. Resin canal was found in Sumatran pine but it was not observed in Damar. Cupressoid pit and taxodioid pit were found in Damar and window-like pit and pinoid pit were observed in Sumatran pine. Tracheid length of Damar and Sumatran pine was shorter than $3,000{\mu}m$. There were uniseriate rays in Damar and Sumatran pine and fusiform ray in Sumatran pine. All the hardwood species observed in this study were diffuse-porous. They had different vessel groups, i.e., solitary pore in Afrika and Simpur Batu, pore cluster in Angsana and mostly 2-4 rows of radial pore multiple in Mahoni. Mindi and Trembesi had mostly 2-3 rows of radial pore multiple with paratracheal parenchyma as aliform and confluent types. Afrika, Mahoni and Simpur Batu showed heterocellular rays which composed of procumbent cells in the body and mostly 1-2 rows of upright and/or square cells in the margin. All ray cells procumbent was observed in Angsana, Mindi and Trembesi. The large rays commonly exceeding 1 mm in height and ray width of 3~6 cells were observed in Simpur Batu. The other five hardwood species showed ray width of 1~3 cells. Vessel number per $mm^2$ of Angsana and Simpur Batu was higher than those of the other hardwood species. The length of wood fiber and tracheid showed a tendency to increase from pith to bark. By IAWA list, fiber length of hardwoods was classified into long in Simpur Batu and short in Angsana and Trembesi.

Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation (종가시나무 조림지의 임분밀도에 따른 임목 바이오매스 및 양분축적량)

  • Choi, Bong-Jun;Baek, Gyeongwon;Jo, Chang-Gyu;Park, Seong-Wan;Yoo, Byung Oh;Jeong, Su-Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.294-302
    • /
    • 2016
  • This study was conducted to evaluate aboveground tree biomass and nutrient (C, N, P, K, Ca, and Mg) response of tree components by high (1,933 trees $ha^{-1}$) and low (1,200 tree $ha^{-1}$) stand densities in a 27-year-old Quercus glauca plantation. The study site was located in Goseong county, Gyeongsangnam-do, southern Korea. Total 12 trees (6 high and 6 low stand densities) were cut to develop allometric equations and to measure nutrient concentration of tree components. Stand density-specific allometric equations in the high and low stand densities were significant (P < 0.05) in tree components with diameter at breast height (DBH). Also, generalized allometric equations could be applied to estimate tree biomass regardless of the difference of stand density because of no significant effect on slope of stand density-specific allometric equations. Aboveground tree biomass estimated by the allometric equations was significantly higher in the high stand density (177 Mg $ha^{-1}$) than in the low stand density (114 Mg $ha^{-1}$). However, nutrient concentration of tree components was not significantly affected by the difference of stand density. Nutrient stocks in tree components were not significantly between the high stand density and the low stand density, except for the N and P stocks of stem wood. These results indicate that aboveground tree biomass could be significantly affected by stand density, but nutrient concentration among the tree components was not affected by the difference of stand density in a Quercus glauca plantation.

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

Development of Diameter Distribution Change and Site Index in a Stand of Robinia pseudoacacia, a Major Honey Plant (꿀샘식물 아까시나무의 지위지수 도출 및 직경분포 변화)

  • Kim, Sora;Song, Jungeun;Park, Chunhee;Min, Suhui;Hong, Sunghee;Yun, Junhyuk;Son, Yeongmo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.311-318
    • /
    • 2022
  • We conducted this study to derive the site index, which is a criterion for the planting of Robinia pseudoacacia, a honey plant, and to investigate the diameter distribution change by derived site index. We applied the Chapman-Richards equation model to estimate the site index of the Robinia pseudoacacia stand. The site index was distributed within the range of 16-22 when the base age was 30 years. The fitness index of the site index estimation model was low, but we judged that there was no problem in the application because the residual distribution of the equation had not shifted to one side. We used the Weibull diameter distribution function to determine the diameter distribution of the Robinia pseudoacacia stand by site index. We used the mean diameter and the dominant tree height as independent variables to present the diameter distribution, and our analysis procedure was to estimate and recover the parameters of the Weibull diameter distribution function. We used the mean diameter and the dominant tree height of the Robinia pseudoacacia stand to show distribution by diameter class, and the fitness index for dbh distribution estimation was about 80.5%. As a result of schematizing the diameter distribution by site indices as a 30-year-old, we found that the higher the site index, the more the curve of the diameter distribution moved to the right. This suggests that if the plantation were to be established in a high site index stand, considering the suitable trees on the site, the growth of Robinia pseudoacacia woul d become active, and not onl y the production of wood but al so the production of honey would increase. We therefore anticipate that the site index classification table and curve of this Robinia pseudoacacia stand will become the standard for decision making in the plantation and management of this tree.

The Status and Prospect of Poplar Research in Korea (포플러 연구현황과 전망)

  • 구영본;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2003
  • Populus species have been as a model species in tree breeding and we have enormous varieties resulting from the poplar breeding because of their fast growth performance and short rotation age. New varieties developed in Korea are common italian poplar(P euramericana, I-214, I-476), P euramericana“Eco 28”(Italian poplar No.1) and p. deltoides“Lux”(Italian poplar No.2), which were introduced from foreign countries. As hybrid polars, Hyun-Sasi(p. alba ${\times}$ P. glandulosa No.1, No.2, No.3, No4.), P. nigra x P. maximowiczii and P. koreana x P. nigra val. italica, were developed, and P. davidiana was selected as the result of selection breeding The total plantation areas covered with the new varieties are 935,162ha that include 745,773ha of P. euramericana, 184,636ha of P. alba x P. glandulosa, and other new varieties are 4,735ha. The new poplars are contributed to increase farmer's income as well as bare land tree-planting in Korea. The technologies associated with the poplar species were developed, such as the determination of optimum site for new the poplar species, the crossing method between incompatible poplar species, and the vegetative mass propagation. In the future, poplar species will be considered for phytoremediation species at contaminated areas such as landfill sites or with lives stock's waste water as well as wood production, a shade tree like road-side tree and public park tree.

  • PDF

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany (독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발)

  • Jae-gyun Byun;Martina Ross-Nickoll;Richard Ottermanns
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

Total Nitrogen Distribution and Seasonal Changes in Inorganic Nitrogen at a Pinus koraiensis Stand in Kwangju-gun, Kyǒnggi-do, Korea (경기도(京畿道) 광주지방(廣州地方)의 잣나무임분(林分)에 있어서 전질소(全窒素)의 분포(分布)와 무기태(無機態) 질소(窒素)의 계절적(季節的) 변화(變化))

  • Shin, Joon Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.69 no.1
    • /
    • pp.56-68
    • /
    • 1985
  • This study was conducted (1) to measure the nitrogen content of various parts of trees in a 24-year-old Pinus koraiensis plantation, providing a harvest method with the least impact on the self-serving mechanisms in the nitrogen status of the ecosystem and (2) to examine the seasonal changes in inorganic nitrogen (ammonium salt and nitrate, separately) at various soil depths and to study the self-serving mechanisms for nitrogen at the ecosystem, providing an appropriate method and season for the application of nitrogen fertilizers. The results obtained in this study were as follows; 1) Of the total nitrogen content of the total tree biomass (except for roots), nearly 61.5% was distributed in the needles, 20% in the branches, 5.5% in the stem bark, and 13% in the stem wood. Therefore, the harvest method of removing only wood parts for pulpwood production has little impact on the self-serving mechanisms of the site's nitrogen status. 2) Inorganic nitrogen concentrations decreased with increasing soil depths. The seasonal average concentration of inorganic nitrogen was highest in early spring and decreased in the following descending order; autumn, tollowed by mid-summer, and early summer. This pattern resulted from the fact that the loss of nitrate was greatly influenced by environmental factors. Thus, it was suggested that an application of active nitrogen fertilizer would be appropriate in spring.

  • PDF