• Title/Summary/Keyword: plantation wood

Search Result 54, Processing Time 0.02 seconds

Studies on the Productive Structure and the Productivity of × Populus albaglandulosa Plantation (은수원사시나무의 조림지(造林地)의 생산구조(生産構造)와 생산성(生産性))

  • Kim, Joon Ho;Sun, Soon Hwa;Lee, Suk Koo;Kim, Chung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.9-14
    • /
    • 1977
  • The productive structure and the productivity of ${\times}$Populus albaglandulosa plantations, where are middle parts of the Korean peninsula, were studied by means of stratifying clip technique and of allometry. The densities of stands in the sample areas were 693 trees/ha in 6 year-old plantation and 527 or 625 trees/ha in 9 year-old one. The photosynthetic part of the productive structure was not shown normal conical form but layering. So this was efficient to transmit solar radiation into the stand floor. The standing crop of the terrestrial parts of 6 year-old plantation was 18.11 ton/ha and that of 9 year-old one 38.8 to 47.3 ton/ha. The wood volume to trunk to 6 year-old was $31.3m^3/ha$ and that of 9 year-old was 68.8 to $83.9m^3/ha$. The annual net production of 6 year-old plantation was 4.8 ton/ha/year and that of 9 year-old one was 10.0 to 11.7 ton/ha/year and its wood volume of trunks was 17.9 to $21.1m^3/ha/year$. In the 9 year-old plantation the standing crop or the annual net production was different between two sample areas. This seemed that the cause was not due to chemical character but to physical character of soil.

  • PDF

Super tree development by pyramiding heterologous functional genes

  • Noh, Eun-Woon
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.120-125
    • /
    • 2005
  • Continuous degradation of forest in both quality and quantity threatens wood security in the future. Thus in the future, most wood and pulp will be expected to be produced from plantation forests. We attempt to produce superior trees suitable for such plantations with maximum productivity in limited land area. Tree productivity could be enhanced either by promoting growth and wood quality or by reducing loss caused by abiotic and biotic stresses. Genetic transformation techniques may offer ways to improve the productivity by enabling trees to tolerate the stresses or to covert limited resources into big biomass. With the availability of information on various functional genes and gene transfer techniques, it should be possible to develop such trees. In this presentation, our work to produce such trees at Korea Forest Research Institute is briefly introduced.

  • PDF

Environmental Features and Actions of Pulp & Paper Industry (펄프.제지산업의 환경적 특성과 대책)

  • Cho, Jun-Hyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • Pulp and paper industry is a typical plant industry which usually consume lots of water and energy. Recently, environmental issues have become more important due to climate changes around the world, and reinforcement in the regulatory content in transfer and management of chemical material and that in environmental regulations for waste water and air. Paper industry is a source material recycle industry which recycle or reuse waste paper, recyclable wood, planned plantation or lumber from thinning and waste wood. Hence it can be said that paper industry is the representative industry for earth environment and of 21th century.

Preparation of Cellulose Nanofibers from Domestic Plantation Resources (국내 자생 식물자원을 이용한 셀룰로오스 나노섬유의 제조 기술 개발)

  • Jang, Jae-Hyuk;Kwon, Gu-Joong;Kim, Jong-Ho;Kwon, Sung-Min;Yoon, Seung-Lak;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • This research has been carried out to investigate the characteristics of cellulose nanofibers manufactured from domestic lignocellulosic materials by mechanical grinding method. The continuous grinding process was effective for loosening cell wall structure, with increasing grinding time, much smaller nanofibers were observed. Filtration time was linearly increased with increasing grinding time for all experimental materials. Relative crystallinity of cellulose was not changed by grinding process, but increased by delignification treatment. Tensile property of fiber sheets was drastically improved with increasing grinding time. Fibers sheets obtained from delignified cone stalks showed an excellent tensile strength. Consequently, it is considered that this study presented some effective information for manufacturing cellulose nanofibers with domestic plantation resources.

Characteristics of Sap Exudation from Acer okamotoanum (Nakai) Plantation Forest in Jinju Region (진주지역 우산고로쇠나무 인공림의 수액 출수 특성)

  • Kim, Chang-Hwan;Park, Joon-hyung;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Kyoung-Tae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.308-316
    • /
    • 2017
  • This study was carried out to investigate the sap exudation characteristics in Acer okamotoanum (Nakai) plantation forest. As a result, Sap exudation quantity was rapidly reduced when mean temperature was increased by above $3.4^{\circ}C$. Considering this result, sap collection before end of February is more effective. Sap exudation quantity during the day started at approximately 9 o' clock, and reached the peak at approximately 11 o' clock, and ended at approximately 16 o' clock. Sugar content of sap was reduced with increasing period. Except for Na, and mineral components by tapping period were no significant difference.

Geographic information system-based identification of suitable cultivation sites for wood-cultivated ginseng

  • Beon, Mu Sup;Park, Jun Ho;Kang, Hag Mo;Cho, Sung Jong;Kim, Hyun
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.491-495
    • /
    • 2013
  • Wood-cultivated ginseng, including roots in its dried form, is produced in forest land without using artificial facilities such as light barriers. To identify suitable sites for the propagation of wood-cultivated ginseng, factor combination technique (FCT) and linear combination technique (LCT) were used with geographic information system and the results were superimposed onto an actual wood-cultivated ginseng plantation. The LCT more extensively searched for suitable sites of cultivation than that by the FCT; further, the LCT probed wide areas considering the predominance of precipitous mountains in Korea. In addition, the LCT showed the much higher degree of overlap with the actual cultivation sites; therefore, the LCT more comprehensively reflects the cultivator's intention for site selection. On the other hand, the inclusion of additional factors for the selection of suitable cultivation sites and experts' opinions may enhance the effectiveness and accuracy of the LCT for site application.

Site suitability for conifer plantation and a new challenge to utilize deciduous trees

  • NAGASHIMA, Keiko
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.24-24
    • /
    • 2018
  • Degraded plantation forests are increasing because of unfavorable forestry conditions prevailing in Japan, including falling timber prices, increasing operational costs, and aging and declining forestry workforce. To remedy this situation, appropriate management strategy is required. This study introduces the challenges of Odai Town, Mie Prefecture that employed a new management strategy by evaluating site suitability for conifer forests and that proposes a new forest management regime of planting deciduous trees in unsuitable sites. The site suitability for conifer forests was evaluated from two aspects: the natural site conditions and the relationship among site conditions, growth, and damage by Anaglyptus subfasciatus Pic. in Cryptomeria japonica D. Don and Chamaecyparis obtusa Sieb. Et Zucc. forests. By analyzing the relationship among site conditions, growth, and insect damage based on field data obtained in plantation forests, growth evaluation and insect damage evaluation maps were developed. Based on the natural forest investigation, natural site condition maps for C. japonica and C. obtusa were established. Furthermore, by integrating these evaluation maps with the forest road maps showing the accessibility to the forest, the forest management regime for the whole plantation area of Odai Town was established. The forest management regime map indicates the sites suitable for forestry: suitable for long-rotation, short-rotation, and potential sites for short-rotation. The sites unsuitable for forestry were considered to be more suitable for broadleaved forests. Clear-cutting was conducted in a small area and different seral stage saplings (approximately 20 deciduous tree species) suitable to the site conditions were planted in an area of $80-120m^2$ protected by deer-fences. This might establish a forest composed of many species with a multilayer vertical forest structure in a short period. The planted saplings were distributed neither randomly nor uniformly to reflect the natural distribution of trees in the forest. A challenge to develop new products using the deciduous trees has started, such as wood chips for preparing smoked food, essential oil, and deodorizer. As these challenges have just begun, their effects on enhancing sustainable resource management are still being monitored. Even with the challenges, this regime can be of high value as a management strategy to remedy the situation of expansion of degraded forests in Japan.

  • PDF

Studies on the Properties of Mechanical Pulp from Italian Poplar Wood(Populus euramericana I-476) by the Age of Tree (수령(樹齡)에 의한 포플러펄프의 성질(性質)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Jo, Byoung-Muk;Ahn, Won-Yong;Moon, Chang-Guk;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.168-179
    • /
    • 1982
  • The first step to utilize the growing resources of Italian poplar (Populus euramericana I-476) for pulp-Woods, its characteristics and adaptabilities to the pulp industry must be investigated completely. The plantation methods are important for its fast growing in stock, and no less important is the cutting age for its utilization as pulpwood. In this paper, the stone groundwood pulping, refiner groundwood pulping and chemi-groundwood pulping characteristics by the age of tree, along with their physical and chemical characterstics were tested, and relationships between the age groups were analyzed to find out the optimum felling age. The results obtained are as follows: 1. The coefficient of pliability was a little higher in the case of younger trees. 2. The water retention value of each pulp was directly proportional to its physical strength, but this tendency was not detected between the age groups of sample woods. 3. Generally, the physical strength of younger wood pulp was lower regardless of the pulping process. But in the case of pretreatment with NaOH, Asphund and CGP pulp from 5 year old sample wood were stronger in physical strengths than those of GP and Asplund pulp with no pretreatment from 10 years old sample wood. 4. The tear factor of Asplund pulp with alkali pretreatment was higher than that of CGP pulp but the breaking length and the burst factor was similar in all processes. Considering the pulp yield and its brightness, CGP process seems to be advantageous. 5. The dissimilarity of physical strength between 7 and 10 years old wood pulp was not very large in all pulping processes but the physical strength of 5 year old wood pulp was very weak. In the of groundwood pulping from Italian poplar woods, 5 year old wood pulp should be mixed with other long fiber pulp for making a good paper.

  • PDF

Physical and Mechanical Properties of Major Plantation and Promising Tree Species Grown in Indonesia (I) (인도네시아산 주요 조림 및 유망 수종의 물리적 및 역학적 특성(I))

  • Kim, Jong-Ho;Jang, Jae-Hyuk;Ryu, Jae-Yun;Febrianto, Fauzi;Hwang, Won-Joung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.467-476
    • /
    • 2014
  • The physical and mechanical characteristics of 10 Indonesian wood species were investigated. Mangium, Gandaria and Rambutan showed higher density. Mangium, Gandaria and Mangga appeared lower in shrinkage, and the ratio of tangential/radial was low in Albizia, Kupa and Mangga. The compression strength parallel to the grain and hardness were high in Mangium and Nangka. Gmelina, Mangium, Gandaria, Kupa, Nangka and Rambutan had valuable properties for commercial wood materials. Consequently, it is considered that the results of this study could be useful basic data for the improved use of planted and promising species in Indonesia.

Wood Physical and Mechanical Properties of Clonal Teak (Tectona grandis) Stands Under Different Thinning and Pruning Intensity Levels Planted in Java, Indonesia

  • Gama Widya SETA;Fanny HIDAYATI;WIDIYATNO WIDIYATNO;Mohammad NA'IEM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-132
    • /
    • 2023
  • The objective of this study was to reveal the impact of thinning and pruning regimes on the physical and mechanical properties of clonal teak wood planted in Java. In this study, a 15-year-old clonal teak plantation was carried out and the obtained data were evaluated with analysis of variance (ANOVA). The results showed that different thinning intensities had a significant impact on the alteration of heartwood volume development (F = 25.63; p < 0.0001). Meanwhile, the impact of different thinning treatments in several physical properties depends on the pruning treatment levels [moisture content (F= 12.18, p < 0.0001); tangential shrinkage (F = 15.60, p < 0.0001); T/R ratio (F = 7.17, p < 0.0001); and volumetric shrinkage (F = 10.81, p < 0.0001)]. However, different thinning intensities had no significant impact on wood basic density alteration (F = 0.72, p = 0.486), while pruning intensities affect the differences between radial (F = 3.52, p = 0.030) and volumetric shrinkage (F = 3.13, p = 0.044). In mechanical properties, thinning intensity levels did not promote any significant differences [modulus of elasticity (F = 1.41, p = 0.248); modulus of rupture (F = 0.94, p = 0.392); compressive strength parallel to grain (F = 0.21, p = 0.813); and compressive strength perpendicular to the grain (F = 0.41, p = 0.669)]. Meanwhile, different pruning treatments and combination treatments were not significantly altered all mechanical properties. These results indicated that the thinning and pruning regimes can enhance the mechanical properties without having a serious alteration in the physical properties of clonal teak wood.