• Title/Summary/Keyword: plant resources

Search Result 8,279, Processing Time 0.036 seconds

Agricultural Status of Lam Dong Province in Vietnam and the Strategy for Korea-Vietnam ODA International Cooperation Program in Agriculture (베트남 람동성의 농업현황 및 한-벳 ODA 농업협력사업 전략)

  • Cho, Joon-Hyeong;Jang, Hye-Ri;Lim, Jong-Min;Lee, Sok-Young;Kim, Wan-Seok
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.465-474
    • /
    • 2011
  • Agricultural environment of Lam Dong province, which is located in central highland area, is totally different from that of other lower areas in Vietnam. In Lam Dong province, abundant plant resources were naturally grown such as pine trees, taxus, and wild orchids, which can grow in high mountainous area. In Lam Dong, the field proportion of perennial crops was higher than that of annual crops. However, the field proportion and yields of vegetables were highest among the all cultivated crops, estimating 38% (36,552ha) and 72% (993,082MT), respectively. Especially in Da Lat, vegetables, flowers, orchids, and industrial crops were mainly produced because this area is geographically close to Ho Chi Minh city. And also in Da Lat, 64% (8,447ha) and 36% (4,777ha) of farm fields were used for producing annual and perennial crops, respectively, and the yields of fresh vegetables in this area was estimated to 213,478MT which was 21.5% of the whole yields in Lam Dong province. Thus Korea, Taiwan, Japan, France, and Holland have invested to agriculture in Da Lat for producing and exporting flowers, vegetables, and tea. In 2009, flower cultivation area of Da Lat was over 55% in Lam Dong province and average amount of values were 9,781 million USD, which was higher than that of al other crops. Thus following strategies could be suggested for the development of agriculture in Lam Dong province. The first, agricultural cooperation with Da Lat, Lam Dong, should be characterized to horticulture and floriculture, followed by supporting both appropriate R&D techniques and equipments. And then agricultural system should be made in relationship with the local companies. Finally, agricultural cooperation program should be conducted toward the direction for both donor and recipient countries.

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Analysis of Change in Flora and Vegetation in the Research Sites before and after the Forest Road Construction in Minjujisan in Korea - Focused on the Forest Road at Jeollabuk-do Muju-gun Seolcheon-myeon Micheon-ri Minjujisan Area - (임도 개설 전·후 식물상 및 식생 변화 분석 - 전북 무주군 설천면 미천리 민주지산 임도를 중심으로 -)

  • Hyoun-Sook Kim;Joon-Woo Lee;Sang-Myong Lee
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.367-391
    • /
    • 2023
  • This study was conducted for 10 years from 2012, which is a year before the forest road construction in Minjujisan, to 2022 to analyze annual changes in flora and vegetation before and after the forest road construction and to provide strategies for management. The plant communities in the research sites along the forest road showed the differentiation between slopes with Quercus mongolica community on the northwestern slope and Quercus variabilis and Larix kaempferi communities on the southwestern slope. A total of 212 taxa have increased for number 7 between before and after the construction from a total of 66 taxa (44 families, 59 genera, 51 species, 13 varieties, and 2 forma) in 2012 and 207 taxa (71 families, 153 genera, 176 species, 27 varieties, and 4 forma) in 2015 to 278 taxa (78 families, 172 genera, 242 species, 1 subspecies, 31 varieties, and 4 forma) in 2022. It is noteworthy that the vegetation cover and the introduction of new taxa had been expanded in the sites adjacent to the construction, which is likely caused by the significantly increased amount of light and the introduction of annual herbaceous and naturalized plants after the construction. The results of 10 years of current study reveal that the vegetation cover and the number of new taxa had rapidly increased in earlier years after the construction, slowly decreased later on, and finally formed a stable forest with the increase in the ratio of dominant species. The vegetation cover of the herbaceous layer immediately increased on the slopes along the forest road for a few years after the construction although it had continuously decreased while that of the shrub layer quickly increased. It was shown that on the hillslope the vegetation cover of tall- and low-tree layers increased whereas that of herbaceous and shrub layers rapidly decreased.

Improvement of a Black Soybean Line With Green Cotyledon and Triple Null Alleles for P34, 7S α' Subunit, and Lectin Proteins (P34, 7S α' Subunit 및 Lectin 단백질이 없는 녹색자엽을 가진 검정콩 계통 개발)

  • Sarath Ly;Sang In Shim;Min Chul Kim;Jin Young Moon;Jong Il Chung
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.313-319
    • /
    • 2024
  • Cultivars or genetic resources with a black seed coat and green cotyledons are rich in lutein, which can promote eye health, and anthocyanin, known for its numerous health benefits. However, mature seeds also contain P34, 7S α' subunit, and lectin proteins, which are allergenic and degrade quality. Here, we report the breeding of a new soybean line with a black seed coat, green cotyledon, and free of P34, 7S α' subunit, and lectin proteins. A total of 157 F2 seeds with black seed coats and green cotyledons were selected by crossing a female parent with a brown seed coat, green cotyledon, and lacking the 7S α' subunit and lectin proteins with a male parent with a black seed coat, green cotyledon, and lacking the P34 and lectin proteins. The P34 and 7S α' subunit proteins were consistent with a ratio of 9:3:3:1, indicating that they are independent of each other. From 14 F2 seeds that were recessive (cgy1cgy1p34p34) for both proteins, one individual F2 plant (F3 seeds) with the desired traits-black seed coat, green cotyledon, and lacking P34, 7S α' subunit, and lectin proteins- was finally selected. The triple null genotype (absence for P34, 7S α' subunit, and lectin proteins) was confirmed in random F3 seeds. The selected line has a black seed coat and green cotyledons, and when sown on June 14 in the greenhouse, the maturity date was approximately October 3, the height was about 68 cm, and the 100-seed weight was about 26.5 g.

Comparative Analysis of Forage Characteristics in Six Medium Maturing of Italian Ryegrass (Lolium multiflorum Lam.) Varieties in Korea (국내 육성 이탈리안 라이그라스 중생종 6 품종의 품종특성 평가)

  • Chang-Woo Min;Jae Hoon Woo;Bo Ram Choi;Eun-A Lim;Ki-Won Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.118-126
    • /
    • 2024
  • This study was conducted in Cheonan, the middle region of South Korea, to evaluate the forage characteristics of six medium maturing Italian ryegrass varieties: 'Kowinmaster', 'IR 601', 'IR 602', 'IR 603', 'IR 604' and 'IR 605'. In growth characteristics, 'Kowinmaster' exhibited the earliest heading date on April 30, while 'IR 601' exhibited the latest on May 17. 'IR 601' exhibited the highest lodging resistance, and all varieties demonstrated excellent disease resistance, waterlogging tolerance, and cold tolerance. 'IR 603', 'IR 604', and 'IR 605' demonstrated above-average plant length, with 'IR 604' reaching the longest at 114.8 cm. In productivity, 'IR 602' and 'IR 605' produced the highest total dry matter yield, each exceeding 12,800 kg/ha. Regarding feed values, 'Kowinmaster' recorded the highest RFV and TDN at 119.18 and 66.07%, respectively, with 'IR 605' exhibiting the second highest. 'IR 604' and 'IR 601' demonstrated crude protein concentrations over 9%, with 'IR 604' exhibiting the highest at 9.74%. Analysis of monosaccharide content in Italian ryegrass revealed that 'IR 605' exhibited the highest glucose and fructose content at 23.35 g/kg and 50.70 g/kg, respectively. In summary, 'IR 602' exhibited the highest productivity, 'Kowinmaster' recorded the highest feed value, and 'IR 605' exhibited the highest glucose and fructose content. Therefore, 'IR 605' is considered the most outstanding variety due to its superior productivity, second highest feed value, and significant monosaccharide content.

Morphological Characteristics, and Coefficient of Variation, Heritability and Genetic Advance of Major Cultivars of Spray Chrysanthemum (주요 스프레이 국화 품종의 형태적 특성과 변이계수, 유전율 및 유전자 전이율)

  • Shim, Sung-Im;Lim, Ki-Byung;Kim, Chang-Kil;Chung, Mi-Young;Kim, Kyung-Min;Chung, Jae-Dong
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.269-281
    • /
    • 2016
  • The statistical analyses of coefficient of variation, heritability, and genetic advance were carried out to identify differences in morphological characteristics, such as the stem and inflorescence length, of 10 major commercial cultivars of spray chrysanthemum (Chrysanthemum morifolium). For morphological characteristics, stem lengths ranged from 46.4 cm to 54.9 cm, the maximum diameter of stem was 5.6 to 8.5 mm, the hardness of the stem was 0.17 to $0.70kg{\cdot}m^{-2}$, the fresh weight of stem was 7.5 to 17.5 g, the dry weight of the stem was 1.6 to 3.3 g, the ratio of dry weight/fresh weight of stem was 15.9% to 23.1%. Also, the number of leaves on the stem was 8.4 to 12.2, the stem leaf area was 17.8 to $37.8m^2$, the fresh weight stem leaves was 5.3 to 18.6 g, the dry weight was 0.5 to 1.4 g and the ratio of dry weight /fresh weight of stem leaves was 7.6% to 11.5%. The inflorescence length ranged from 10.1 to 18.6 cm, the fresh weight of inflorescence was 7.3 to 26.7 g, the dry weight of inflorescence was 1.2 to 2.8 g, the ratio of dry weight /fresh weight of inflorescence was 10.4% to 17.1%. For flower, the diameter of the flower center was 8.2 to 13.3 mm, the petal width was 5.7 to 14.0 mm, the petal length was 12.9 to 33.1 mm, and the petal thickness was 157.8 to $354.4{\mu}m$. The mean values of each character in each cultivar were very different, and DMRT and LSD values based on morphological characteristics among 10 cultivars were highly significant. For variability and genetic parameters, the lowest CV (coefficient of variation), PCV (phenotypic coefficient of variation), and GCV (genotypic coefficient of variation) were 4.79% to 5.15% in stem length, and the highest variations were 62.97% to 65.21% in leaf area. ECV (error or environmental coefficient of variation) was the lowest for leaf area (1.71%) and it was the highest for leaf dry weight (19.30%). Heritability also significantly differed among the characteristics, ranging from 68.69% to 99.67%, the lowest value was shown in ratio of dry weight /fresh weight of stem and the highest value was for leaf area of stem. The value for genetic advance was the lowest in hardness of stem at 0.30 and the highest in leaf thickness at 156.65. The lowest genetic advance as percentage of mean of stem hardness was 9.17%, while the highest percentage of stem length was 134.27%. Thus the characters which had the highest values indicated above show the influence of additive gene action and may provide useful resources for selection programs for agronomic improvement.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.