• Title/Summary/Keyword: plant requirements

Search Result 470, Processing Time 0.023 seconds

Effectiveness Analysis of Alternatives for Water Resources Management Considering Climate Change and Urbanization (기후변화 및 도시화를 고려한 수자원관리 대안의 효과 분석)

  • Park, Kyung-Shin;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1103-1111
    • /
    • 2009
  • This study derived the analysis results of alternatives for integrated watershed management under urbanization and climate change scenarios. Climate change and urbanization scenarios were obtained by using SDSM (Statistical Downscaling Method) model and ICM (Impervious Cover Model), respectively. Alternatives for the Anyangcheon watershed are reuse of wastewater treatment plant effluent, and redevelopment of existing reservoir. Flow and BOD concentration duration curves were derived by using HSPF (Hydrological Simulation Program - Fortran) model. As a result, low flow ($Q_{99},\;Q_{95},\;Q_{90}$) and BOD concentration ($Q_{10},\;Q_5,\;Q_1$) were very sensitive to the alternatives comparing to high flow($C_{30},\;C_{10},\;C_1$). Although urbanization makes the hydrological cycle distorted, effective alternatives can reduce its damage. The numbers of days to satisfy the instreamflow requirements and target water quality were also sensitive to urbanization. This result showed that the climate change and urbanization should be considered in the water resources/watershed and environmental planning.

Design of Web-GIS based SWG Simulator for Disseminating Integrated Water Information (통합 물정보 제공을 위한 웹 GIS 기반의 SWG 시뮬레이터 설계)

  • Park, Yonggil;Kim, Kyehyun;Lee, Sungjoo;Yoo, Jaehyun
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.19-31
    • /
    • 2015
  • Due to the global warming and unstable abnormal climate changes, water resources differences between regions and water shortage are occurring. Therefore, the water resources management is becoming more important for the stable securement of future water supply and demand. Researches on Smart Water Grid (SWG), which is considered as a new method, that can stably secure and maintain the water resources, are actively being conducted but it is still in infancy. Thus, this study aimed to design SWG simulator based on GIS in order to provide integrated water information in web environment. The user's requirements were analyzed for system development and important functions such as SWG current situation checking, future prediction, filtration plant situation checking functions were designed and data expression techniques using GIS and HTML5 were applied to enhance the understanding of the users. Also, when the emergency situations occurred, the solving process of the situations are reproduced to check the solution process using scenario reproduction functions. Use-case, class, sequence diagram, which are a design for real system development and defines the system usage contents of users, were written, and the story board was written to check the final development contents. This study designed a SWG simulator in order to support the water maintenance reacting to climate changes. The development of system is expected to help securing information to deal with emergency situations such as water shortage and help the decision maker to make decision through reproduction of scenario. The major functions were designed for the convenience of water resource manager and producer but new contents for consumers must be developed to enable duplex information transmission.

Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant (원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가)

  • Song, Dong Soo;Ha, Sang Jun;Seong, Je Joong;Jeon, Hwang Yong;Huh, Seong Cheol
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.186-190
    • /
    • 2014
  • Nuclear Power Plants require the control ability of chemical condition (pH) because pH control during transient accident such as LOCA makes an able the fission product removal capability to be maintained, stress corrosion cracking of stainless steel equipment to be prevented and the production of hydrogen by aluminum and zinc to be minimized. An NPP is designed to control the pH of containment spray and sump coolant using the spray additives 30% NaOH in the event of loss of coolant accident. In this paper, the pH of sump coolant of an NPP during LOCA was analyzed and the fission products removal constant and decontamination factor were calculated according to Standard Review Plan 6.5.2 related to spray chemical conditions of pH. The calculated pH value of recirculation mode using the computer code corresponds to 8.09~9.67, which meets the chemical environment regulation requirements. The fission product removal capability caused by containment spray system is performed to provide input to radiation analysis.

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Evaluation of a Nutrition Education Program for Elementary School Children (초등학교 고학년 대상 영양교육의 효과 평가)

  • Ahn, Yun;Ko, Seo-Yeon;Kim, Kyung-Won
    • Korean Journal of Community Nutrition
    • /
    • v.14 no.3
    • /
    • pp.266-276
    • /
    • 2009
  • The purpose of this study was to implement and evaluate the nutrition education program for elementary school children Subjects were 5th graders (n = 142) of an elementary school in Seoul, and 138 children completed four sessions of nutrition education during March-April, 2008. One group pretest-posttest design was used to evaluate the program effectiveness. Anthropometric measurements and measurements on nutrition knowledge, eating attitudes and eating behavior were done before and after education. Data were analyzed using paired t-test, t-test and ${\chi}^2-test$. After completing nutrition education, body mass index (from 19.3 to 18.9), fat mass (from 10.9 kg to 10.1 kg), percent body fat (from 25% to 23.3%) of subjects decreased significantly (p < 0.001). Percentages of overweight or obese children were 24.6% at pretest and decreased to 20.3% at posttest, although it did not reach statistical significance. Total score of nutrition knowledge increased significantly from 11.9 (59.5/100) at pretest to 14.7 (73.5/100) at posttest (p < 0.001). After nutrition education, percentages of correct answers increased significantly in 10 knowledge items out of 20 items. These included items such as desirable weight control, energy requirements for boys, food groups, snack, and function of fat and balanced meals (p < 0.001). Total score of eating attitudes increased significantly from 35.1 to 36.9 (p < 0.001). Attitude of applying nutrition knowledge to daily life (p < 0.001), interest toward nutrition and health (p < 0.001), attitude of moderating food intake (p < 0.01), and attitude toward eating habit and future health (p < 0.05) were significantly different between pretest and posttest. Total score of eating behaviors increased significantly from 46.7 (possible score: 20-60) to 49.5 by nutrition education (p < 0.001). Improvement in eight eating behaviors were noticed after nutrition education. These included eating meals slowly, eat protein foods (p < 0.001), eating breakfast, eating meals regularly, eating meals with diverse foods, having dairy foods, eating foods using plant oils (p < 0.01), and having grains (p < 0.05). Subjects evaluated quite positively in attractiveness of program, understanding of program contents, helpfulness of program in improving nutrition knowledge and meal management. Study results show that the nutrition education program was effective in improving nutrition knowledge, eating attitudes and changing eating behaviors of children. This program can be used in nutrition education of children at school or at public health centers.

A Study on the Relation Characteristics between Bubble Size Distribution and Floating Time (버블의 크기별 입도분포와 부상시간과의 상관특성에 관한 연구)

  • Jeon, Gun;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.277-281
    • /
    • 2017
  • Lately rainfall characteristics that it rains a lot in a short space of time often occurs. Because of this meteorological phenomena, the flow rate and concentration of initial rainfall for runoff and combined sewer overflows are changed. In the case of this inlet fluctuation, the flotation method at high surface loading rate is suitable for water quality management. the flotation method is able to meet the removal rate requirements of water public zone in 5 to 10 min which is irelatively short period. For assessment and diagonision of flotation method, A/S ratio is applied until now. But unfortunately, this has some limits for evaluation standard for certification and assessment of technical diagnosis and operation. This is why there is different efficiency in the bubble distribution at the same A/S ratio. The velocity and time of floating is changed by the different bubble distributions. The floating time affects the plant volume because the time factor make size dicision. Therefore the charateristics of bubble distribution and floating time at the same A/S ratio is necessary to apply to evaluation standard for certification and assessment of technical diagnosis and operation. For generalization of the method in certification and assessment, the characteristics of bubble distribution was studied. Until recently, using the optical device and shooting live video, there are some analysis technology of the floating factors. But this kind of technology is influenced by the equipment. with this level of confidence about the results, it is difficult to apply to generalize. According this reasons, this study should be applied on experiment generalization of method about measurement of relation between bubble distribution and floating time.

Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal (중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발)

  • Bang, Je Heon;Park, Joo-Wan;Jung, Kang Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.315-334
    • /
    • 2014
  • Wolsong Low- and Intermediate-level radioactive waste (LILW) disposal center has two different types of disposal facilities and interacts with the neighboring Wolsong nuclear power plant. These situations impose a high level of complexity which requires in-depth understanding of phenomena in the safety assessment of the disposal facility. In this context, multidimensional radionuclide transport model and hydraulic performance assessment model should be developed to identify more realistic performance of the complex system and reduce unnecessary conservatism in the conventional performance assessment models developed for the $1^{st}$ stage underground disposal. In addition, the advanced performance assessment model is required to calculate many cases to treat uncertainties or study parameter importance. To fulfill the requirements, this study introduces the development of two-dimensional integrated near-field performance assessment model combining near-field hydraulic performance assessment model and radionuclide transport model for the $2^{nd}$ stage near-surface disposal. The hydraulic and radionuclide transport behaviors were evaluated by PORFLOW and GoldSim. GoldSim radionuclide transport model was verified through benchmark calculations with PORFLOW radionuclide transport model. GoldSim model was shown to be computationally efficient and provided the better understanding of the radionuclide transport behavior than conventional model.

A Study on Suppression of UT Grain Noise Using SSP MPO Algorithms (SSP MPO 알고리즘을 이용한 초음파 결정립 잡음 억제에 관한 연구)

  • Koo, Kil-Mo;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-89
    • /
    • 1996
  • It is very important for ultrasonic test method to evaluate the integrity of the class I components in nuclear power plants. However, as the rltrasonic test is affected by internal structures and configurations of test materials, backscattering, that is, time invariant noise is generated in large grain size materials. Due to the above reason, the received signal results in low signal to noise(S/N) ratio. Split spectrum processing(SSP) technique is effective to suppress the grain noise. The conventional SSP technique. however, has been applied to unique algorithm. This paper shows that MPO(minimization and polarity threshold) algorithm which two algorithms are applied simulatancously, was utilized, the signal processing time was shorten by using the new constant-Q SSP with the FIR filter which frequency to bandwidth ratio is constant and the optimum parameters were analysed for the signal processing to longitudinal wave and shear wave with the same requirements of inspection on nuclear power plant site. Moreover, the new ultrasonic test instrument, the reference block of the same product form and material specification, stainless stell test specimens and copper test specimens block of the same fabricated for the application of new SSP technique. As the result of experimental test with new ultrasonic test instrument and test specimens, the signal to noise ratio was improved by appying the new SSP technique.

  • PDF

Technology for AR Dry Storage of Spent Fuel (원전부지내 사용후핵연료 건식저장기술 분석)

  • Lee, Heung-Young;Yoon, Suk-Jung;Lee, Ik-Hwan;Seo, Ki-Seog
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.313-327
    • /
    • 1996
  • As an at-reactor(AR) storage method o( spent fuel, there are horizontal concrete module type, metal storage cask type, concrete storage cask type, dual purpose (transportation and storage) cask type and multi-purpose (transportation, storage and disposal) cask type. All other types except multi-purpose one have been already used for AR dry storage of spent fuels after obtaining operation license in various foreign countries. Also the development of multi-purpose type has been continued for operation license. In America, Japan, Germany, Canada, Spain, Switzerland, and Czech Republic, etc., AR dry storage facilities are under operation or on propulsion, and spent fuels are transported to interim storage facility or reprocessing plant after dry storage at reactor temporarily. At Wolsung site, in case of Korea, concrete silo type has already been introduced, and it is believed to be inevitable to store spent fuels at reactor temporarily, considering the reality that storage capacity of spent fuel is approaching to the limit in some nuclear power plants. In this report, the system characteristics, design requirements, technical standards and status of AR storage system, which is suitable for domestic site such as Kori, have been studied. In most cases, the licensed period of storage cask is limited up to 20 years and the integrity of material and maintenance of leaktightness are required during the whole service life.

  • PDF