• Title/Summary/Keyword: plant phenology

Search Result 85, Processing Time 0.022 seconds

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

Effects of Enhanced Ultraviolet-B Radiation on Plants (오존층 파괴에 의한 자외선 증가가 식물에 미치는 영향)

  • Hak Yoon Kim;Moon Soo Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2001
  • The depletion of stratospheric ozone is regarded as a major environmental threat to plant growth and ecosystem. The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation in the 280-320 nm wavelength range. Enhanced UV-B radiation may have influence on plants biological functions in many aspects including inhibition of photosynthesis, DNA damage, lipid peroxidation, changes in morphology, phenology, and biomass accumulation. To cope with the damage by UV radiation, plants have evolved to have protective mechanisms, such as photorepair, accumulation of UV-absorbing compounds, leaf thickening and activation of antioxidative enzymes. The objective of this review is to address the effects of enhanced UV-B on plant growth, UV-B action mechanisms and protection and protection mechanisms in plants.

  • PDF

Phenology of Marine Enteromorpha compressa (L.) Greville (Ulvales, Chlorophyceae) Growing along Tidal Levels (조위에 따른 해산 녹조 납작파래 (Enteromorpha compressa (L.) Greville)의 생물계절)

  • 김광용
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.69-75
    • /
    • 1992
  • Phenological study of Enteromorpha compressa was conducted monthly from May 1990 to April 1991 in tide pools at three tidal zones of Paekpori, the southern coast of Korea. Although water temperature did not differ significantly among all tidal zones investigated, absence of macroscopic plants during summer was correlated with increasing water temperature. Salinity and suspended particulate matter (SPM) showed statistical differences between high and middle tidal zones, as well as high and low tidal zones. But, the differences in salinity or SPM among tidal zones did not comparatively coincide with the phenological pattern. The frequencies of occurrence of microscopic and macroscopic samples at high tidal zone were always lesser than or equal to those at other zones. At high tidal zone individuals completed the life history at least twice in a year, surviving for about four months, whereas at low and middle tidal zones they completed it once in a year, surviving for about six months.months.

  • PDF

Monitoring the phenology of Forsythia velutina, an endemic plant of Korea

  • Sung, Jung-Won;Kim, Geun-Ho;Lee, Kyeong-Cheol;Shim, Yun-Jin;Kang, Shin-Gu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Background and objective: This study was conducted on Forsythia velutina, a special plant, in Gyeongsangnam-do Arboretum under the Gyeongsangnam-do Forest Environment Research Institute, which is located in the southern part of Korea. Methods: The research aimed to analyze the flowering characteristics of the plant by calculating the optimal temperature and humidity according to the flowering time and flowering period for 8 years from 2010 to 2017 in order to provide basic data for bioclimate studies of endemic plants. Results: It was observed that the Forsythia velutina showed a life cycle from mid-March and to mid-November. Average growth period was 243 (± 6.5) days. In testing the reliability of a single variable according to the meteorological factors, the Cronbach's Alpha was 0.701, which indicates that the findings were relatively reliable. The average date of flowering was March 16 (SD = 5.8) and the average date on which blossoms fall was March 29 (SD = 5.2). A substantial difference in flowering period was observed from year to year 11 to 23 days, with an average of 16 days (± 4.7). The temperature and humidity in February to March, which affect the flowering, were 2.9-5.5℃, and 66.5-73.0%, respectively, and showed differences every year. Conclusion: The correlation between flowering time and meteorological factors was positive, and the highest daily temperature and average daily temperature had the highest significance. When establishing basic data on plant species for the conservation of endemic plants, the changes in life cycle events and weather conditions are identified. It is believed that it will be helpful in establishing a conservation strategy for the plant species in the future.

MARYBLYT Study for Potential Spread and Prediction of Future Infection Risk of Fire Blight on Blossom of Singo Pear in Korea (우리나라 신고배 화상병 꽃감염 확산 가능성 및 미래 감염위험 예측을 위한 MARYBLYT 연구)

  • Kim, Min-Sun;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Since fire blight (Erwinia amylovora) firstly broke out at mid-Korea in 2015, it is necessary to investigate potential spread of the invasive pathogen. To speculate environmental factors of fireblight epidemic based on disease triangle, a fire blight predicting program, MARYBLYT, was run with the measured meteorological data in 2014-2017 and the projecting future data under RCP8.5 scenario for 2020-2100. After calculating blossom period of Singo pear from phenology, MARYBLYT was run for blossom blight during the blossom period. MARYBLYT warned "Infection" blossom blight in 2014-15 at Anseong and Cheonan as well as Pyungtak and Asan. In addition, it warned "Infection" in 2016-17 at Naju. More than 80% of Korean areas were covered "Infection" or "High", therefore Korea was suitable for fire blight recently. Blossom blight for 2020-2100 was predicted to be highly fluctuate depending on the year. For 80 years of the future, 20 years were serious with "Infection" covered more than 50% of areas in Korea, whereas 8 years were not serious covered less than 10%. By comparisons between 50% and 10% of the year, temperature and amount of precipitation were significantly different. The results of this study are informative for policy makers to manage the alien pathogen.

A Study on the Plants for Phenology of the Mt. Jiri National Park (지리산국립공원 식물종의 생물계절성 연구)

  • Shin, Jae Sung;Yu, Nan Hee;Kang, Hee Gon;Shin, Hyun Tak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.47-57
    • /
    • 2011
  • This study monitored forest plant species vulnerable to climate change in Jiri Mountain, one of Korea's representative alpine regions, in order to securely preserve plant genetic resources susceptible to climate change and to utilize the results as basic data for bioclimatology prediction and management on a long-term basis. A majority of indicator plants tended to blossom one week to one month later in 2010 than in 2009. As with the blooming dates, the falling dates of blossoms became later in most species, with the exception for Weigela florida and Oplopanax elatus. Leaf bursting as well fell on later dates in a majority of species excluding Carpinus laxiflora and Cupressus sempervirens, displaying the most obvious differences among the data of analysis of the 2009-2010 physiological cycle changes. It is believed that was due to the fact that temperatures in February, March and April, which affect plants' blossoming and leaf bursting, were lower in 2010 than in 2009 and that cold temperatures in the winter lasted for a longer period in 2010 than in 2009. The dates of leaves being changed to red were similar in 2009 and 2010 by being or later or earlier by several weeks in 2010 than in 2009 without any regularity. Most species' leaves began to fall at similar dates in 2009 and 2010 or at later dates by one to two weeks in 2010 than in 2009. The temperature differences in late 2009 and late 2010 were not so large, resulting in similar dates of falling leaves, and gaps in several indicator plants' physiological cycles without any regularity can be attributed to each individual plant's physiological and environmental characteristics.

Effects of Climate Change on C4 Plant List and Distribution in South Korea:A Review (기후변화에 따른 국내 C4 식물 목록과 분포 변화:고찰)

  • Kim, Myung-Hyun;Han, Min-Su;Kang, Kee-Kyung;Na, Young-Eun;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.123-139
    • /
    • 2011
  • It is expected that identification and lists of $C_4$ plants in specific regions are useful not only for the ecological researches that are related to vegetation phenology and succession but also as an index of climate change. In this review, $C_4$ plants growing in South Korea were listed and their life forms were investigated. In addition, we discussed the influences that climatic change and the $C_4$ plants exerted on plant ecosystem. Photosynthetic pathway types ($C_3$ and $C_4$) for the plant species in South Korea were determined by reviewing the scientific literatures published between 1971 and 2010. Of the total 4476 species in 1123 genera and 197 families, 206 species (4.6%) in 84 genera (7.5%) and 21 families (10.7%) were identified as $C_4$ plants (including $C_3$-$C_4$ intermediate plants). Among the identified $C_4$ species, 53 species (25.7%) in 26 genera and 15 families were classified as Dicotyledoneae, while 153 species (74.3%) in 58 genera and 6 families were classified as Monocotyledoneae. The majority of the $C_4$ species belong to four families: Chenopodiaceae (15 species), Amaranthaceae (13 species), Gramineae (102 speceis) and Cyperaceae (45 species). With respect to life form composition of 206 $C_4$ species, Th-$R_5$-$D_4$-t was most dominant: 95 species (46.1%) were included in Th, 123 species (59.7%) in $R_5$, 179 species (86.9%) in $D_4$, and 122 species (59.2%) in t. The projected increase in temperature due to climate change may provide better conditions for the growth of $C_4$ plants. Such a result will have considerable impacts on the interspecific competition between $C_3$ and $C_4$ plants, the distribution of $C_4$ plants, plant phenology, and plant diversity.

Phenology and Population Dynamics of Scirpus fluviatilis (Torr.) A. Gray in the Littoral Zone of the Upo Wetland (우포늪 연안대에서 매자기의 화력학과 개체군 변화)

  • Seo, Hye-Ran;Park, Sang-Yong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Seasonal changes of the growth characteristics and biomass of Scirpus fluviatilis, a aquatic emergent vascular plant, were investigated to reveal the phenology and the population dynamics and to provide the fundamental resources for the restoration counterplan of the wetland vegetation in the littoral zone of the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from March 2006 to November 2006. Scirpus fluviatilis was distributed commonly in Upo, Mokpo, Sajipo, Jokjibyeol, and Topyeongcheon upstream and downstream of Upo wetland, and the density was highest in Mokpo. Distribution range for the water depth was 9~49cm, and the highest shoot density in 26~49cm, and the mean shoot density was $119/m^2$, and the mean shoot length was 122.3cm on May 28. The number of the tuber was $104.5/0.25m^2$, and the living tubers were 84.2%. The mean fresh biomass of the living tubers was 3.0g, and those of 1~4g was most as 57.9%. Germination rates of the living tubers was 43.8%, and the maximum rate was in 7~9g and more than 10g. In the pot cultivation, the shoot density of the germinated tubers and the dormant tubers were highest as 13.5 and 9.7, respectively in early August. In the field study, the shoot density had few change before typhoon damage, while the density increased abruptly in November after flooding accompanied with the typhoon 'Ewiniar'. The shoot length in the pot cultivation and in the field study were 100~116cm and 60~170cm, respectively in the growth-end. Biomass allocation rates into the stem, leaf, flower, and underground parts were 8.9%, 6.6%, 0%, and 84.5%, respectively in the pot cultivation of the germinated tubers, and those of the dormant tubers were 7.1%, 7.1%, 0%, and 85.8%, respectively. The tuber number increased to 1.4~4.1 times by the growth-end, so it is concluded that Scirpus fluviatilis is mostly propagated by the vegetative reproduction.

  • PDF

Estimation of the Second Flight Season of Chilo suppressalis (Lepidoptera: Crambidae) Adults in the Northeastern Chinese Areas (중국 동북부 지역에서 이화명나방(Chilo suppressalis)(Crambidae) 2화기 성충 발생 시기 추정)

  • Jung, Jin Kyo;Kim, Eun Young;Yang, Woonho;Lee, Seuk-Ki;Shin, Myeong Na;Yang, Jung-Wook;Ju, Hongguang;Jin, Dongcun;Pao, Jin;Wang, Jichun;Zhu, Feng
    • Korean journal of applied entomology
    • /
    • v.61 no.2
    • /
    • pp.335-347
    • /
    • 2022
  • We investigated the emergence patterns of Chilo suppressalis (Lepidoptera: Crambidae) adults using sex pheromone traps in the three northeastern areas, Dandong (40°07'N 124°23'E) (Liaoning province), and Gongzhuling (43°30'N 124°49') and Longjing (42°46'N 129°26'E) (Jilin province), China, in 2020 and 2021. Two times of adult flight seasons were isolated clearly during the rice growing periods in the all areas, in which the first season from mid May to late July, and the second season from mid July to mid September were observed. The adult emergence seasons in the areas at higher latitude were later than that at lower latitude. Using the adult emergence data during the first flight seasons, the second flight seasons were estimated through insect phenology modelling, and compared with the observed data. Temperature-dependent life history models (developmental rate, development completion, survival rate, adult aging rate, total fecundity, oviposition completion, and adult survival completion) were collected or constructed for each life stage of C. suppressalis, in which the data from the four previous studies were used. Those models were combined in an insect phenology estimation software, PopModel, and operated for the observed areas. In the results, the phenology modelling operated with the models based on the data of shorter larval periods in the previous studies estimated more accurately the second flight seasons. In 2021, we investigated the change of damaged hill ratios of rice with observing the adult emergence at Dandong and Longjing, 2021. The increase periods of damaged hill ratios of rice were observed two times during the total rice cultivation season, which may be caused by different generations of C. suppressalis larvae.