• Title/Summary/Keyword: plant pathogenic

Search Result 814, Processing Time 0.032 seconds

Characterization of Fusarium oxysporum f. sp. fragariae Based on Vegetative Compatibility Group, Random Amplified Polymorphic DNA and Pathogenicity

  • Nagarajan Gopal;Kang Sung-Woo;Nam Myeong-Hyeon;Song Jeong-Young;Yoo Sung-Joon;Kim Hong-Gi
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.222-229
    • /
    • 2006
  • Twenty-two isolates of Fusarium oxysporum f. sp. fragariae were obtained from diseased strawberry plants and their characteristics were investigated by vegetative compatibility group (VCG), random amplified polymorphic DNA (RAPD), and pathogenicity. Three major VCGs (A, B, and C) and one incompatible group were identified by nitrate reductase complementation test. The virulence pattern of the 22 isolates was studied in relation to four cultivars including Dochiodome, Red-pearl, Maehyang and Akihime. RAPD markers were used to determine genetic relationship, and created three major clusters among the 22 isolates of F. oxysporum f. sp. fragariae. Isolates belong to VCG-C were strongly pathogenic, and relatively high correlation was existed among VCG and RAPD, and virulence. In addition, VCG and RAPD pattern between pathogenic and non-pathogenic isolates were distinctly different.

Production of Thaxtomin A by Korean Isolates of Streptomyces turgidiscabies and Their Involvement in Pathogenicity

  • Kim, Young-Sook;Cho, Jun-Mo;Park, Duck-Hwan;Lee, Heung-Goo;Kim, Jeom-Soon;Seo, Sang-Tae;Shin, Kwan-Yong;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.168-171
    • /
    • 1999
  • Crude extracts of pathogenic Streptomyces turgidiscabies isolates produced necrotic reaction on potato slices. Necrosis was first visible 24 hr after application and increased in severity over several days. However, necrosis was not observed when crude extracts of nonpathogenic strains were applied onto tuber slices. Presence of thaxtomin A from crude extracts of pathogenic S. turgidiscabies was identified by thin layer chromatography and high performance liquid chromatography. Nonpathgenic strains did not produce thaxtomin A in oatmeal broth. Inoculation of potato tuber slices with thaxtomin A partially purified from crude extract of a pathogenic S. turgidiscabies ST5 reproduce necrotic reaction suggesting that thaxtomin A is a pathogenicity determinant in S. turgidiscabies.

  • PDF

Migration and Attacking Ability of Bursaphelenchus mucronatus in Pinus thunbergii Stem Cuttings

  • Son, Joung A;Jung, Chan Sik;Han, Hye Rim
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2016
  • To understand how Bursaphelenchus xylophilus kills pine trees, the differences between the effects of B. xylophilus and B. mucronatus on pine trees are usually compared. In this study, the migration and attacking ability of a non-pathogenic B. mucronatus in Pinus thunbergii were investigated. The distribution of B. mucronatus and the number of dead epithelial cells resulting from inoculation were compared with those of the pathogenic B. xylophilus. Although B. mucronatus is non-pathogenic in pines, its distribution pattern in P. thunbergii was the same as that of B. xylophilus. We therefore concluded that the non-pathogenicity of B. mucronatus could not be attributed to its migration ability. The sparse and sporadic attacking pattern of B. mucronatus was also the same as that of B. xylophilus. However, the number and area of the dead epithelial cells in pine cuttings inoculated with B. mucronatus were smaller than in those cuttings inoculated with B. xylophilus, meaning that the attacking ability of B. mucronatus is weaker than that of B. xylophilus. Therefore, we concluded that the weaker attacking ability of B. mucronatus might be the factor responsible for the non-pathogenicity.

Synergistic Growth Inhibition of Herbal Plant Extract Combinations against Candida albicans

  • Jeemin YOON;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • Many skin diseases are caused by microbial infections. Representative pathogenic fungus and bacterium that cause skin diseases are Candida albicans and Staphylococcus aureus, respectively. Malassezia pachydermatis is a fungus that causes animal skin diseases. In this study, we propose a method for removing pathogenic microorganisms from the skin using relatively safe edible herbal extracts. Herbal extracts were screened for skin health through the removal of pathogenic microorganisms, and combinations for effective utilization of the screened extracts were identified. In this study, among methanol extracts of 240 edible plants, C. albicans, S. aureus, and M. pachydermatis were killed by extracts of 10 plants: Acori Gramineri Rhizoma, Angelicae Tenuissimae Radix, Cinnamomi Cortex, Cinnamomi Ramulus, Impatientis Semen, Magnoliae Cortex, Moutan Cortex Radicis, Phellodendri Cortex, Scutellariae Radix, and Syzygii Flos. By evaluating the synergistic antifungal activities against C. albicans using all 45 possible combinations of these 10 extracts, five new synergistic antifungal combinations, Acori Gramineri Rhizoma with Magnoliae Cortex extracts, Acori Gramineri Rhizoma with Phellodendri Cortex extracts, Angelicae Tenuissimae Radix with Magnoliae Cortex extracts, Magnoliae Cortex with Phellodendri Cortex extracts, and Phellodendri Cortex with Syzygii Flos extracts, were identified. By utilizing the selected extracts and five combinations with synergistic antifungal effects, this work provides materials and methods to develop new and safe methods for treating candidiasis using natural products.

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

Antifungal Activity of Lichen-forming Fungi against Colletotrichum acutatum on Hot Pepper

  • Wei, Xinli;Jeon, Hae-Sook;Han, Keon-Seon;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.202-206
    • /
    • 2008
  • Antifungal activity of Korean and Chinese lichen-forming fungi (LFF) was evaluated against plant pathogenic fungus of Colletotrichum acutatum, causal agent of anthracnose on hot pepper. This is the first attempt to evaluate antifungal activity of LFF, instead of lichen thalli, against C. acutatum. Total 100 LFF were isolated from the lichens with discharged spore method or tissue culture method. Among the 100 isolates, 8 LFF showed more than 50% of inhibition rates of mycelial growth of the target pathogen. Especially, Lecanora argentata was highly effective in inhibition of mycelial growth of C. accutatum at the rate of 68%. Antifungal activity of other LFF was in the order of Cetrelia japonica (61.4%), Ramalina conduplicans (59.5%), Umbilicaria esculenta (59.5%), Ramalina litoralis (56.7%), Cetrelia braunsiana (56.5%), Nephromopsis pallescensn (56.1%), and Parmelia simplicior (53.8%). Among the tested LFF, 61 isolates of LFF exhibited moderate antifungal activity against the target pathogen at the inhibition rates from 30 to 50%. Antifungal activity of the LFF against C. acutatum was variable at the species level rather than genus level of LFF. This study suggests that LFF can be served as a promising bioresource to develop novel biofungicides.

Rabbit Hemorrhagic Disease Virus Variant Recombinant VP60 Protein Induces Protective Immunogenicity

  • Yang, Dong-Kun;Kim, Ha-Hyun;Nah, Jin-Ju;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1960-1965
    • /
    • 2015
  • Rabbit hemorrhagic disease virus (RHDV) is highly contagious and often causes fatal disease that affects both wild and domestic rabbits of the species Oryctolagus cuniculus. A highly pathogenic RHDV variant (RHDVa) has been circulation in the Korean rabbit population since 2007 and has a devastating effect on the rabbit industry in Korea. A highly pathogenic RHDVa was isolated from naturally infected rabbits, and the gene encoding the VP60 protein was cloned into a baculovirus transfer vector and expressed in insect cells. The hemagglutination titer of the Sf-9 cell lysate infected with recombinant VP60 baculovirus was 131,072 units/50 μl and of the supernatant 4,096 units/50 μl. Guinea pigs immunized twice intramuscularly with a trial inactivated RHDVa vaccine containing recombinant VP60 contained 2,152 hemagglutination inhibition (HI) geometric mean titers. The 8-week-old white rabbits inoculated with one vaccine dose were challenged with a lethal RHDVa 21 days later and showed 100% survival rates. The recombinant VP60 protein expressed in a baculovirus system induced high HI titers in guinea pigs and rendered complete protection, which led to the development of a novel inactivated RHDVa vaccine.