• Title/Summary/Keyword: plant functional genomics

Search Result 142, Processing Time 0.039 seconds

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • Korean Journal of Breeding Science
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob;Ahn, Jeong Ho;Cha, Young Soon;Yun, Doh Won;Lee, Myung Chul;Ko, Jong Cheol;Lee, Kyu Seong;Eun, Moo Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2006
  • Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

Computational Analysis of Neighboring Genes on Arabidopsis thaliana Chromosomes 4 and 5: Their Genomic Association as Functional Subunits

  • Goh, Sung-Ho;Kim, Tae-Hyung;Kim, Jee-Hyub;Nam, DouGu;Choi, Doil;Hur, Cheol-Goo
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2003
  • The genes related to specific events or pathways in bacteria are frequently localized proximate to the genome of their neighbors, as with the structures known as operon, but eukaryotic genes seem to be independent of their neighbors, and are dispersed randomly throughout genomes. Although cases are rare, the findings from structures similar to prokaryotic operons in the nematode genome, and the clustering of housekeeping genes on human genome, lead us to assess the genomic association of genes as functional subunits. We evaluated the genomic association of neighboring genes on chromosomes 4 and 5 of Arabidopsis thaliana with and without respectively consideration of the scaffold/matrix­attached regions (S/MAR) loci. The observed number of functionally identical bigrams and trig rams were significantly higher than expected, and these results were verified statistically by calculating p-values for weighted random distributions. The observed frequency of functionally identical big rams and trig rams were much higher in chromosome 4 than in chromosome 5, but the frequencies with, and without, consideration of the S/MAR in each chromosome were similar. In this study, a genomic association among functionally related neighboring genes in Arabidopsis thaliana was suggested.

Prospects for Plant Biotechnology and Bioindustry in the 21st Century: Paradigm Shift Driven by Genomics (21세기 식물생명공학과 생물산업의 전망 : 유전체 연구에 의한 Paradigm Shift)

  • LIU Jang Ryol;CHOI Dong-Woog;CHUNG Hwa-Jee
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.19-25
    • /
    • 2002
  • Biotechnology in the 21st century will be driven by three emerging technologies: genomics, high-throughput biology, and bioinformatics. These technologies are complementary to one another. A large number of economically important crops are currently subjected to whole genome sequencing. Functional genomics for determining the functions of the genes comprising the given plant genome is under progress by using various means including phenotyping data from transgenic mutants, gene expression profiling data from DNA microarrays, and metabolic profiling data from LC/mass analysis. The aim of plant molecular breeding is shifting from introducing agronomic traits such as herbicide and insect resistance to introducing quality traits such as healthful oils and proteins, which will lead to improved and nutritional food and feed products. Plant molecular breeding is also expected to aim to develop crops for producing human therapeutic and industrial proteins.

  • PDF

Hot Pepper Functional Genomics: Monitoring of Global Gene Expression Profiles During Non-Host Resistance Reactions in Hot Pepper Plant ( Capsicum annuum).

  • Lee, Sanghyeob;Chung, Eun-Joo;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.80.2-81
    • /
    • 2003
  • Since hot peppers (Capsicum annuum L.) are getting reputation as an important source of vitamins, medicine and many other areas, consumption and cultivation is being increased in the world. In spite of this usefulness, so little attention has been given to the hot pepper plants. To date, less than 500 nucleotide sequences including redundancy has been identified in NCBI database. Therefore we started to EST sequencing project for initial characterization of the genome, because of the large genome size of hot pepper (2.7 3.3 ${\times}$ 109 bp), To date, a set of 10,000 non-redundant genes were identified by EST sequencing for microarray-based gene expression studies. At present, cDNA microarrays containing 4,685 unigene clones are used for hybridization labeled targets derived from pathogen infected and uninoculated leaf tissues. Monitoring of gene expression profiles of hot pepper interactions with soybean pustule pathogen (Xag;Xanthomonas axonopodis pv. glycine) will be presented.

  • PDF

Proteomic Studies in Plants

  • Park, Ohk-Mae K.
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.133-138
    • /
    • 2004
  • Proteomics is a leading technology for the high-throughput analysis of proteins on a genome-wide scale. With the completion of genome sequencing projects and the development of analytical methods for protein characterization, proteomics has become a major field of functional genomics. The initial objective of proteomics was the large-scale identification of all protein species in a cell or tissue. The applications are currently being extended to analyze various functional aspects of proteins such as post-translational modifications, protein-protein interactions, activities and structures. Whereas the proteomics research is quite advanced in animals and yeast as well as Escherichia coli, plant proteomics is only at the initial phase. Major studies of plant proteomics have been reported on subcellular proteomes and protein complexes (e.g. proteins in the plasma membranes, chloroplasts, mitochondria and nuclei). Here several plant proteomics studies will be presented, followed by a recent work using multidimensional protein identification technology (MudPIT).

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea (Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구)

  • Lee, Gang-Seob;Park, Sung-Han;Yun, Do-Won;Ahn, Byoung-Ohg;Kim, Chang-Kug;Han, Chang-Deok;Yi, Gi-Hwan;Park, Dong-Soo;Eun, Moo-Young;Yoon, Ung-Han
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.

A TILLING Rice Population Induced by Gamma-ray Irradiation and its Genetic Diversity

  • Cho, Hyun Yong;Park, Seo Jung;Kim, Dong Sub;Jang, Cheol Seong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 $M_3$ TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.