• 제목/요약/키워드: plant endophyte

검색결과 58건 처리시간 0.022초

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

Effect of Tall fescue (Schedonorus phoenix Scop.) Genotype on Endophyte (Neotyphodium coenophialum) Transmission under Water stress

  • Noh, Jaejong;Ju, Ho-Jong
    • 한국초지조사료학회지
    • /
    • 제32권4호
    • /
    • pp.325-334
    • /
    • 2012
  • It has been known that endophyte (Neotyphodium coenophialum) is beneficial to tall fescue (Schedonorus phoenix Scop.) because the mutualistic endophyte is able to confers tolerance against abiotic and biotic stresses to tall fescue. However, this fungal endophyte produces toxic alkaloid resulting in negative effects on animal performance. Recently, Non-toxic endophyte have been developed and inserted into tall fescue to avoid detrimental effect on animal but remaining positive influence on tall fescue. In order to keep this beneficial impact, it is essential to have endophyte infected tall fescue through vertical transmission from maternal plants to seeds. Little research has been carried out on endophyte transmission. To get basic information related to endophyte transmission, experiment was conducted to examine the effect of plant genotype on endophyte transmission under water stresses. Overall endophyte concentration in seeds was higher than that in panicles and endophyte concentration in seeds and panicles relied on plant. This study revealed that drought is not a critical component to control the endophyte transmission from maternal plants to seeds. Plant genotype is an important factor controlling the endophyte transmission from plant to seed.

물오리나무의 뿌리혹으로부터 Frankia 공생균주의 분이 (Isolation of Symbiotic Frankia Strain from the Root Nodule of Alnus hirsuta)

  • 권석윤
    • Journal of Plant Biology
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 1989
  • An endophyte was isolated from the root nodule of alnus hirsuta. The isolated endophyte was identified as a Frankia sp. through morphological characteristics. Their infectivity and effectivity were confirmed by nitrogen-fixing root nodules induced on inoculated Alnus seedlings. Reisolated endophyte from the induced nodule showed identical morphological characteristics as the first isolate, showing the nodule was induced by the first isolate. Consequently, the first isolate was confirmed as a true symbiont of Almus hirsuta root nodule. The isolate was designated as a Frankia SNU 014201 strain.

  • PDF

Comparison of Endophytic Microbial Community in Kiwifruit Plant Cultivars

  • Cho, Gyeongjun;Kim, Min-jung;Kwon, Youngho;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제34권4호
    • /
    • pp.341-346
    • /
    • 2018
  • The microbiome makes a significant contribution to plant health and endophytes may generate positive effects for the host. However, there is a limited knowledge available concerning the kiwifruit endophyte. Therefore, we discuss endophyte microbiome community structures among the kiwifruit cultivars. Total reads numbered 17620 in cv. Hayward, 11515 in cv. Haegeum and 13613 in cv. Jecygold. The number of OTUs was follows: 112 in cv. Hageum; and 87 in cvs. Hayward and Jecygold. Most of the identified OTUs were phylum Proteobacteria and it emerged that Actinobacteria, Firmicute and Bacteroidetes were mainly present. While the largest difference in Proteobacteria content is between cv. Haegeum and cv. Jecygold, they shared more OTUs than cv. Hayward. As well, this study revealed the presence of remarkably dominated OTU of Pseudomonas spp. in kiwifruit sap regardless of cultivars. To the best of our knowledge, this study is the first tone to investigate the kiwifruit endophyte-microbiome community.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Phytohormnes producing Preussia sp. BSL-10 induce phytohormonal changes in tomato (Solanum lycopersium cv.) under divers temperature.

  • Al-Hosni, Khdija;Shahzad, Raheem;Kang, Sang-Mo;Lee, In-Jung
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.202-202
    • /
    • 2017
  • Global climate change resulted in unwarranted change in global temperature and caused heat and cold stress, which are consider major threat to agriculture productivity around the world. The use of plant growth-promoting microbes is an eco-friendly strategy to counteract such stresses and confer tolerance to the plants. In current study, previously isolated endophytic fungi Preussia sp. BSL-10 has been found to produce phytohormones such as IAA and GA and as such, endophyte Preussia sp. BSL-10 found to induced tolerance against heat and cold stress. The results showed that under both heat and cold stress the plant growth parameter such as shoot, root length, shoot fresh weight and root fresh weight is higher in Preussia sp. BSL-10 treated plants as compare to free Preussia sp. BSL-10 control plants. In addition, the stress-sensitive endogenous ABA levels were significantly increased in Preussia sp. BSL-10 host plant. The current result suggest that the phytohormone-producing endophyte Preussia sp. BSL-10 can increase plant resistance toheat and cold stress, in turn improving agricultural productivity.

  • PDF

An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential

  • Syed, Riyaz-Ul-Hassan;Strobel, Gary;Geary, Brad;Sears, Joe
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.29-35
    • /
    • 2013
  • A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2,4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1,8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.

한국산 겨우살이 수간의 조직특성 (Anatomical Characteristics of Korean Mistletoe [Viscum album var. coloratum(Kom.) Ohwi] Stem)

  • 이보덕;박병수
    • 한국자원식물학회지
    • /
    • 제22권4호
    • /
    • pp.287-292
    • /
    • 2009
  • 최근 천연의 의약품과 식품에 대한 관심이 높아지면서 약리성분이 우수하여 수요가 증가하고 있는 겨우살이 [Viscum album var. coloratum(Kom.) Ohwi] 와 겨우살이의 기주식물인 상수리나무(Quercus acutissima Carr.)가지의 조직특성을 조사하고 인공재배 기초 자료로 활용하기 위하여 수행한 결과는 다음과 같다. 겨우살이 종자가 기주목에 부착되면 종자로부터 성장한 흡기가 수피를 뚫고 들어가 형성층 부위에서 왕성한 세포분열을 통하여 여러 갈래로 분지를 형성하며, endophyte가 수피 속에서 성장하다가 일정한 시기가 되면 수피 외부조직으로 발달하여 줄기와 잎으로 성장하였다. 겨우살이 기주목인 상수리나무의 가지는 심재화가 진행되지 않았지만 타일로시스가 부분적으로 발달한 것은 겨우살이 endophyte의 침투영향으로 생각된다. 겨우살이 줄기의 구성세포는 도관상 가도관, 후벽세포, 방사유세포, 축방향유세포로 구성되어 있으며 활엽수로 분류되지만 도관이 분포하지 않았고 도관의 역할을하는 도관상 가도관이 있는 것으로부터 기주목 도관의 벽공과 겨우살이 가도관의 천공부가 결합하는 것으로 생각된다. 겨우살이 줄기의 구성세포 분포비율은 수령이 증가함에 따라 후벽세포의 분포비율이 높았다. 겨우살이 조직은 일반 목본식물에 비하여 유세포의 분포비율이 높고 세포내에 많은 내용물을 포함하고 있었다.

Genomic Insights into Nematicidal Activity of a Bacterial Endophyte, Raoultella ornithinolytica MG against Pine Wilt Nematode

  • Shanmugam, Gnanendra;Dubey, Akanksha;Ponpandian, Lakshmi Narayanan;Rim, Soon Ok;Seo, Sang-Tae;Bae, Hanhong;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.250-255
    • /
    • 2018
  • Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.