• Title/Summary/Keyword: plant endophyte

Search Result 58, Processing Time 0.022 seconds

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

Effect of Tall fescue (Schedonorus phoenix Scop.) Genotype on Endophyte (Neotyphodium coenophialum) Transmission under Water stress

  • Noh, Jaejong;Ju, Ho-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.325-334
    • /
    • 2012
  • It has been known that endophyte (Neotyphodium coenophialum) is beneficial to tall fescue (Schedonorus phoenix Scop.) because the mutualistic endophyte is able to confers tolerance against abiotic and biotic stresses to tall fescue. However, this fungal endophyte produces toxic alkaloid resulting in negative effects on animal performance. Recently, Non-toxic endophyte have been developed and inserted into tall fescue to avoid detrimental effect on animal but remaining positive influence on tall fescue. In order to keep this beneficial impact, it is essential to have endophyte infected tall fescue through vertical transmission from maternal plants to seeds. Little research has been carried out on endophyte transmission. To get basic information related to endophyte transmission, experiment was conducted to examine the effect of plant genotype on endophyte transmission under water stresses. Overall endophyte concentration in seeds was higher than that in panicles and endophyte concentration in seeds and panicles relied on plant. This study revealed that drought is not a critical component to control the endophyte transmission from maternal plants to seeds. Plant genotype is an important factor controlling the endophyte transmission from plant to seed.

Isolation of Symbiotic Frankia Strain from the Root Nodule of Alnus hirsuta (물오리나무의 뿌리혹으로부터 Frankia 공생균주의 분이)

  • 권석윤
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • An endophyte was isolated from the root nodule of alnus hirsuta. The isolated endophyte was identified as a Frankia sp. through morphological characteristics. Their infectivity and effectivity were confirmed by nitrogen-fixing root nodules induced on inoculated Alnus seedlings. Reisolated endophyte from the induced nodule showed identical morphological characteristics as the first isolate, showing the nodule was induced by the first isolate. Consequently, the first isolate was confirmed as a true symbiont of Almus hirsuta root nodule. The isolate was designated as a Frankia SNU 014201 strain.

  • PDF

Comparison of Endophytic Microbial Community in Kiwifruit Plant Cultivars

  • Cho, Gyeongjun;Kim, Min-jung;Kwon, Youngho;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.341-346
    • /
    • 2018
  • The microbiome makes a significant contribution to plant health and endophytes may generate positive effects for the host. However, there is a limited knowledge available concerning the kiwifruit endophyte. Therefore, we discuss endophyte microbiome community structures among the kiwifruit cultivars. Total reads numbered 17620 in cv. Hayward, 11515 in cv. Haegeum and 13613 in cv. Jecygold. The number of OTUs was follows: 112 in cv. Hageum; and 87 in cvs. Hayward and Jecygold. Most of the identified OTUs were phylum Proteobacteria and it emerged that Actinobacteria, Firmicute and Bacteroidetes were mainly present. While the largest difference in Proteobacteria content is between cv. Haegeum and cv. Jecygold, they shared more OTUs than cv. Hayward. As well, this study revealed the presence of remarkably dominated OTU of Pseudomonas spp. in kiwifruit sap regardless of cultivars. To the best of our knowledge, this study is the first tone to investigate the kiwifruit endophyte-microbiome community.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Phytohormnes producing Preussia sp. BSL-10 induce phytohormonal changes in tomato (Solanum lycopersium cv.) under divers temperature.

  • Al-Hosni, Khdija;Shahzad, Raheem;Kang, Sang-Mo;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.202-202
    • /
    • 2017
  • Global climate change resulted in unwarranted change in global temperature and caused heat and cold stress, which are consider major threat to agriculture productivity around the world. The use of plant growth-promoting microbes is an eco-friendly strategy to counteract such stresses and confer tolerance to the plants. In current study, previously isolated endophytic fungi Preussia sp. BSL-10 has been found to produce phytohormones such as IAA and GA and as such, endophyte Preussia sp. BSL-10 found to induced tolerance against heat and cold stress. The results showed that under both heat and cold stress the plant growth parameter such as shoot, root length, shoot fresh weight and root fresh weight is higher in Preussia sp. BSL-10 treated plants as compare to free Preussia sp. BSL-10 control plants. In addition, the stress-sensitive endogenous ABA levels were significantly increased in Preussia sp. BSL-10 host plant. The current result suggest that the phytohormone-producing endophyte Preussia sp. BSL-10 can increase plant resistance toheat and cold stress, in turn improving agricultural productivity.

  • PDF

An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential

  • Syed, Riyaz-Ul-Hassan;Strobel, Gary;Geary, Brad;Sears, Joe
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2,4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1,8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.

Anatomical Characteristics of Korean Mistletoe [Viscum album var. coloratum(Kom.) Ohwi] Stem (한국산 겨우살이 수간의 조직특성)

  • Lee, Bo-Duk;Park, Beyung-Su
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • Recently, the consumption of mistletoe[Viscum album var. coloratum(Kom.) Ohwi] is increasing because of its good medical effectiveness with the increased concern on the natural medicines and foods. The result obtained from the investigation on the stem tissues of the mistletoe and the oriental chestnut oak, a host plant species, are as follows. Haustorium from the seeds of the mistletoe after their sticking to the branches of the host plant penetrates into the bark where it forms the endophyte system through the active cell division. The endophyte grown in the cambium of the host plant makes the stems and leaves as the outer tissues in a certain time. Even through lignification of the host wood in the branches the oriental chestnut oak was not progressive, its tylosis coas developed partially assembly due to the formation of the endophyte. The stems of the mistletoe consisted of vascular tracheid, selereid, and ray and axial parenchyma, classified as a hardwood without vessels. The vascular tracheids seemed to take a role instead of the vessels in the mistletoe plant from the result that the pits of the vessels in the host branches are linked to the vessel-form tracheid in the mistletoe stems. The constituent ratio of the sclereid cells in the mistletoe stems increased with aging. Furthermore their ratio of the parenchyma cells was higher, which contained the more cell content, compared with the cells of the general woody plant species.

Genomic Insights into Nematicidal Activity of a Bacterial Endophyte, Raoultella ornithinolytica MG against Pine Wilt Nematode

  • Shanmugam, Gnanendra;Dubey, Akanksha;Ponpandian, Lakshmi Narayanan;Rim, Soon Ok;Seo, Sang-Tae;Bae, Hanhong;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.250-255
    • /
    • 2018
  • Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.