• Title/Summary/Keyword: plant cell suspension culture

Search Result 191, Processing Time 0.032 seconds

Studies on Production of Alkaloid by Plant Cell Culture of Corydalis remota (세포 현탁배양에 의한 현호색 알칼로이드의 생산)

  • Chang, Jung-In;Chi, Hyung-Joon;Shin, Seung-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.289-294
    • /
    • 1996
  • In previous paper, we described the induced callus of Corydalis remota contains a significant amount of alkaloids. This study describes an optimal condition to maximize alkaloid production. The suspension cultures maintained alkaloid production ability after fifth subculture and a small amount of alkaloid seemed to be released out of cells. The yields of alkaloid by cultured cells was varied depending on the concentrations of NAA, carbon sources and phosphate ion and depending on the vitamin combinations and concentrations. Biosynthetic precursor and an elicitor treatment also affected the total alkaloid yield of the cultures. The optimal conditions for alkaloid production were as follows: 1) MS basal salt containing 30 g/l of glucose, 1.0 mg/l of NAA, and vitamins of LS medium should be used. 2) The culture should be treated with tyrosine 20 mg/l, and yeast extract 1.5 ml/l after the culture reached a stationary phase of growth. Five alkaloids were isolated from the cultures and they were characterized. The spectral data unambiguously revealed that the isolated compounds were dihydrosanguinarine, protopine. tetrahydropalmatine, allocyptopine and ambinine, respectively.

  • PDF

Production of Biomass and Bioactive Compounds from Cell Suspension Cultures of Eurycoma longifolia in Balloon Type Bubble Bioreactors

  • Shim, Kyu-Man;Murthy, Hosakatte Niranjana;Park, So-Young;Rusli, Ibrahim;Paek, Kee-Yoeup
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.251-258
    • /
    • 2015
  • Eurycoma longifolia is an important rare medicinal plant that contains valuable bioactive compounds. In the present study, cell suspension culture of E. longifolia was established for the production of biomass and phenolic compounds. Various medium parameters, such as concentration of auxin, salt strength of the medium, and sucrose and nitrogen concentrations, were optimized for the production of biomass at the flask-scale level. Full strength Murashige and Skoog (MS) medium supplemented with $3.0mg{\cdot}L^{-1}$ naphthaleneacetic acid (NAA), 3% (w/v) sucrose, 0:60 $NH{_4}^+:NO{_3}^-$ was found suitable for biomass accumulation. Based on the optimized flask-scale parameters, cell suspension cultures were established in balloon-type bubble bioreactors, and bioprocess parameters such as inoculum density and aeration rate were optimized. Inoculum density of $50g{\cdot}L^{-1}$ and increasing aeration rate from 0.05 to 0.3 vvm, with increases every 7 days, were suitable for the accumulation of both biomass and phenolic compounds. With the optimized conditions, $14.70g{\cdot}L^{-1}$ dry biomass, $10.33mg{\cdot}g^{-1}$ DW of phenolics and $3.89mg{\cdot}g^{-1}$ DW of flavonoids could be achieved. Phenolics isolated from the cell biomass showed optimal free radical scavenging activity.

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF

Cloning and Characterization of UV-B Inducible Chalcone Synthase from Grape Cell Suspension Culture System and Its Expression Compared with Stilbene Synthase

  • Song, Won-Yong;In, Jun-Gyo;Lim, Yong-Pyo;Park, Kwan-Sam
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • We performed the cloning of a chalcone synthase (CHS) gene, the key enzyme in the anthocyanin biosynthesis, from the cDNA library constructed with grape suspension cells irradiated UV-B. The PCR fragment was used to cloning the CHS gene. One CHS cDNA clone containing an open reading frame and a partial stilbene synthase (STS)cDNA, the stilbene-type phytoalexin, were isolated. The CHS cDNA clone (VCHS) showed 87% sequence homology with VvCHS (V.vinifea) and 72.3% identity with VSTSY(V.vinifea). its amino acid sequences were longer than any other CHS genes as 454 residues. Two genes were weakly expressed in white light irradiated cells, but highly induced in UV-B irradiated condition during 32 hours. Interestingly, the STS was quickly and abundantly expressed from 2 hours when supplemented with jasmonic acid (JA) and the maximum expression was observed at 4 hours and then gradually decreased. But, the additional UV-B or white light quickly degraded the STS expression than only JA treated grape suspension cells. The CHS also was rapidly induced with JA and the synergistical effect was observed at the addigional light treatment of UV-B or white light. These results are indicated that CHS and STS have different response mechanisms against the environmental stresses.

  • PDF

DNA Delivery into Embryogenic Cells of Zoysiagrass(Zoysia japonica Steud.) and Rice(Oryza sativa L.) by Electroporation (Electroporation을 이용한 잔디(Zoysia japonica Steud.) 및 벼(Oryza sativa L.) 배발생세포로의 DNA 도입)

  • 박건환;최준수;윤충호;안병준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.309-314
    • /
    • 1994
  • To develop simple and efficient transformation methods of monocotyledonous plane, electroporation-mediated delivery of DNA into intact embryogenic cell clumps was investigated in zoysiagrass and rice. Calli of zoysiagrass, induced from 3-week-old immature embryos, were suspension-cultured in MS basic medium supplemented with 1.0 mg/t 2.4-D and used for elechuporation. Calli, derived from immature inflorescences of 20 mm lenth of rice, were also suspension-cultured on N6 basic medium supplemented with 1.0 mg/L 2.4-D. Suspension-cultured embryogenic cell clumps were electroporated in liqid MS medium added with a Plasmid DNA (30 $\mu\textrm{m}$/ml), pGA1074, encoding ${\beta}$-glucuronidiase (GUS). DNA delivery into the cells through cell walls and cell membrane was confirmed by the transient expression of the GUS gene. Cell clumps of zoysiagrass and rice, electroporated with 400 volt at 800 pF capacitance, expressed GUS gene activity at a mean frequency of 25 units (one unit = one clony of blue cells) per 200 ${\mu}\ell$ of packed cell volume. Untreated cells and healed non-embryogenic cells did not exhibit GUS activity These results indicate that electroporation-mediated transformation can use intact embryogenic cells (thus avoiding the use protoplasts) in zoysiagrass and rice.

  • PDF

Selection of 5-Methyltryptophan and S-(2-Aminoethyl)-L-Cysteine Resistant Microspore-Derived Rice Cell Lines Irradiated with Gamma Rays

  • Kim, Dong-Sub;Lee, In-Sok;Jang, Cheol-Seong;Hyun, Do-Yoon;Lee, Sang-Jae;Seo, Yong-Weon;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Microspore-derived cell lines resistant to 5-methyltryptophan (5MT, a tryptophan analog) or S-(2-aminoethyl)-L-cysteine (AEC, a Iysine analog) were selected in rice by in vitro mutagenesis. For selection of 5MT or AEC resistant cell lines, suspension-cultured cells were irradiated with gamma rays. Thirteen 5MT resistant cell lines were selected and they were able to grow stably at 2 times higher 5MT concentration. A feedback insensitive form of anthranilate synthesis, the pathway specific control enzyme for tryptophan synthesis, was detected from the 5MT resistant lines. Contents of the free amino acids in five resistant lines (MR12-1 to MR12-5) showed a 7.4 to 46.6 times greater level than that in the control culture. Tryptophan, phenylalanine, and tyrosine levels in the shikimate pathway were 28.1 and 22.5 times higher in MR12-3 and MR12 4, respectively, than that measured in the control cells. Four AEC resistant cell lines were isolated from cultures grown on medium containing 1 mM AEC, They were able to grow stably with 2 mM AEC, while sensitive calli were inhibited by 0.5 mM AEC. Aspartate kinase activities of the resistant lines were insensitive to the natural inhibitor, Iysine, and accumulated 2.2 to 12.9-fold higher levels of free Iysine than that of the control cells. Especially, the levels of aspartate, asparagine, and methionine in the aspartate pathway showed higher accumulation in the AEC resistant lines than that in the control cells.

Biosynthesis of Sesquiterpene in Hairy Root and Cell Suspension Cultures of Hyoscyamus muticus by Elicitation Using Rhizoctonia solani Extracts (Rhizoctonia solani 추출액 첨가에 의한 Hyoscyamus muticus의 현탁세포배양 및 모상근배양에서 Sesquiterpene 생합성)

  • BACK, Kyoungwhan;SHIN, Dong Hyun;KIM, Kil Ung;De HAAS Cynthia R.;CHAPPELL Joseph;CURTIS Wayne R.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.279-284
    • /
    • 1997
  • The extracellular sesquiterpenoids were accumulated in cell and hairy root cultures of Hyoscyamus muticus by elicitation using extracts of Rhizoctonia solani. The vetispiradiene synthase (VS) which is the first committed step in biosynthetic pathway leading to formation of solavetivone, lubimin, and rishitin from isoprenoid intermediate farnesyl pyrophosphate was induced upon elicitation, whereas no sesquiterpenoids and VS activity were detected in both control cell and hairy root cultures. VS activity increased rapidly and reached its maximum 12 h in both cell and hairy root cultures upon elicitor treatment. VS activities were paralleled with the absolute levels of VS polypeptide(s). Interestingly, the profiles of sesquiterpenoid accumulation in hairy root cultures were different from those in cell cultures. The hairy root culture seemed to fail to metabolize solavetivone further to lubimin.

  • PDF

Glutathione Contents in Various Plant Cell Lines (다양한 식물배양세포주의 Glutathione 함량)

  • 이정은;안영옥;권석윤;이행순;김석원;박일현;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.57-61
    • /
    • 2000
  • We investigated the levels of glutathione (GSH) and its oxidized form (GSSG) in 24 cell lines derived from various plant species to understand the antioxidative mechanism in plant cell cultures. The total glutathione content was 98$\pm$27 $\mu$g/g cell fresh wt, showing a slight difference in plant species. The average contort of GSH and GSSG was 72$\pm$20 and 26$\pm$10 $\mu$g/g cell fresh wt, respectively. The average GSH content in plant cell lines occupies approximately 73% in total glutathione. During the suspension cultures of Scutellaria baicalensis, one of the plant species we tested, the GSH content decreased in proportion to the cell growth during the exponential growth stage, showing the low level at the stationary growth stage (84 $\mu$g/g cell fresh wt), whereas the GSSG content increased to the stationary growth stage (31 $\mu$g/g cell fresh wt). The results suggested that the ratio of GSH and GSSG should be involved in the cell growth and antioxidative mechanism in cultured cells.

  • PDF

Effects of Auxins end Cytokinins on Callus Induction from Leaf Blade, Petiole, and Stem Segments of in Vitro-grown 'Sheridan' Grape Shoots

  • Seung-Heui kim;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 2002
  • To establish an the mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of various combinations of auxins and cytokinins on friable callus production were studied. for friable callus production, 2,4-D was superior to other regulators. IAA at 2 mg/L induced callus from stem and petiole while NAA resulted in rooting. Callus induction rate increased with the 2,4-D level, and stem segments were superior to leaf blade or petiole, showing nearly 100% with 1 and 2 mg/L 2,4-D from petiole and stem. Combined treatments of 2,4-D + kinetin and NAA + BA also yielded friable callus from stem segments. In treatments with 1 mg/L 2,4-D + 1 mg/L kinetin and 1 mg/L NAA + 1 mg/L BA, callus induction rate was nearly 100%. The combination effect of 2,4-D and BA on anthocyanin production was not significant.