• Title/Summary/Keyword: plant cell culture

Search Result 620, Processing Time 0.038 seconds

Plant Regeneration from Protoplasts Isolated through Embryogenic Cell suspension Culture in Rice (벼 현탁배양을 통하여 분리된 원형질체로부터 식물체 재분화)

  • 정병균
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.211-218
    • /
    • 1993
  • Plant regeneration was accomplished from protoplast culture of rice (Oryza sativa L. cv. Taebaeg). Embryogenic callus was induced from mature seed on MS medium containing 5 mM proline, 2.5 mg/L 2,4-D, 30 g/L sucrose in the dark at 28$^{\circ}C$ and used to establish embryogenic cell suspension culture. Suspension cells were subcultured every one week in N6 medium supplemented with 5 mM proline, 200 mg/L casein hydrolysate, 2.5 mg/L 2,4-D and amino acids of AA medium. Suspension cultures were composed of cells that were densely cytoplasmic, potentially embryogenic and were at least maintained for more than 6 months in liquid medium. Protoplasts were isolated from fast-growing suspension culture cells and cultured in a slightly modified KpR medium by mixed nurse culture. Isolated protoplasts began to divide within 5~7 days and thereafter, protoplast-derived calli were sequentially transferred to callus proliferating medium that soft agar MS medium contained 2 mg/L 2,4-D and produced distinct embryogenic cells. Microcolonies were then transferred to solid medium which consisted of MS medium containing 5 mg/L kinetin, 1 mg/L NAA, 1 mg/L ABA, 30 g/L sucrose and 10 g/L sorbitol under fluorescent light. Mulitple shoots of 4~5 per callus emerged and were transferred to hormone-free MS medium for root initiation. Thereafter, The plantlets were transferred to pots of soil to mature in the culture room.

  • PDF

The Effects of Light on the Production of hGM-CSF in Transgenic Plant Cell Culture (빛 조사시간에 따른 형질전환된 담배세포 성장과 hGM-CSF의 생산에 미치는 영향)

  • 이재화;이재화;김영숙;홍신영;신윤지;서조은;권태호;양문식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.568-572
    • /
    • 2001
  • Light is one of the most important environmental factors controlling plant physiology. The human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was produced from cell suspension cultures of transgenic tobacco under different light conditions (24 hr light, 18 hr light/dark cycle, dark). Under 24 hr light condition, cell growth was best and dry cell weight reached 14.4 g/L. Light did not influenced the secretion of total proteins. However, in the dark condition, the ratio of secreted total protein/dry cell weight was 1.5 fold higher than those of ethel conditions. Production of hGM-CSF was highest with 18 hr light condition and reached 496.5 ug/L. In addition, the content of hGM-CSf in secreted total proteins was 1.8 fold higher than that of 24 hr light condition, which is beneficial for the purificationof the protein.

  • PDF

Production of hGM-CSF from Cell Suspension Culture of Transformed Lettuce Using Agrobacterium-mediated Transformation System (Agrobacterium을 이용한 형질전환 상추의 세포 현탁배양으로부터 hGM-CSF의 생산)

  • Kim, Young-Sook;Kim, Mi-Young;Kwon, Tae-Ho;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Lettuce (Lactuca sativa) was transformed with Agrobacterium tumefacience LBA4404 containing human granulocyte macrophage colony stimulating factor (hGM-CSF) gene to produce in cell suspension cultures. Cell suspension culture was established using callus from transgenic lettuce plant. Integration of hGM-CSF gene into plant chromosome was confirmed through genomic PCR and Southern blot analysis. In addition, Northern blot analysis indicated the expression of the introduced hGM-CSF gene in transformed lettuce. The recombinant hGM-CSF was expressed in transgenic cell cultures derived from transgenic plants as a yield of about 149.0 $\mu\textrm{g}$/L in culture filtrate, which was determined by ELISA. These results demonstrated that transformed lettuce cell suspension cultures could be used as a production system of therapeutic proteins such as hGM-CSF.

Somatic Embryogenesis and Plant Regeneration from Stem Tissues of Orostachys japonicus A. Berger

  • Song, Min-Jung;Park, Young-Goo
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.181-187
    • /
    • 2007
  • Orostachys japonicus A. Berger is a Perennial herbaceous plant which has been traditionally used as an anti-inflammatory agent to treat hepatitis and as an anticancer agent. The objective of this study was 1) to establish and proliferate in vitro plant of O. japonicus 2) to induce indirect somatic embryogenesis from O. japonicus. General calli and embryogenic calli in all ranges of 2,4-D and BA combination, were induced and were best at 22% (embryogenic cell) in 5.0 mg/L 2,4-D and 0.5 mg/L BA combination. Embryogenic cell line was maintained by subculture at 2 week intervals and transferred to solid and liquid medium for embryo formation. In solid medium culture, globular and heart shaped embryos were observed in MS medium containing 5.0 mg/L 2,4-D and 0.5 mg/L BA combination. The number of embryos was 6.5 per 0.5 g cell, and then the immature embryos transferred to MS basal medium for embryo development. In a suspension culture of embryogenic cells, globular and heart shaped embryos were emerged in MS medium supplemented with 3.0 mg/L 2,4-D and 0.3 mg/L BA combination after 10 days of incubation. The embryo formation rate was about 33% by suspension culture. The ratio of embryo germination was 60.9%, on the other side, the root formation rate was 74.3% in 1/2 MS continuously.

Isolation, Culture and Electroporation of Rice Protoplasts (벼 원형질체의 분리, 배양 및 Electroporation에 관한 연구)

  • 황성진
    • Journal of Plant Biology
    • /
    • v.34 no.1
    • /
    • pp.19-23
    • /
    • 1991
  • Culture of embryogenic callus and suspension were induced from rice seeds in MS2.5 medium. In hormone free N6 medium, whole plantlets were regenerated from embryogenic callus. We observed cell division and reformation of embryogenic callus on culture of protoplast isolated from embryogenic cell suspensions. In addition, we studied the influencing factors on viability of protoplast treated with electroporation. Viability was decreased according to the increase of voltage and capacitance during electroporation. An optimal level of viability was obtained after treatment with $200-300\;V/1180\;\mu\textrm{F}$ in HEM buffer at $4^{\circ}C$..

  • PDF

Effects of Phytohormones on the Viability and Cell Wall Regeneraton of Tobacco Protoplasts (연초 원형질체의 생존율과 세포벽 재생에 미치는 식물생장조절물질의 효과)

  • 김용옥
    • Journal of Plant Biology
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 1988
  • In order to clarify effects of phytohormones on the viability and the cell wall regeneration of protoplasts isolated from Nicotiana tobacum L. var. BY4, protoplasts isolated from mesophyll tissue were cultured on the Murashige-Skoog liquid media supplemented with auxin(2, 4-D, NAA, IAA) and/or cytokinin (kinetin, BAP, 2ip). Viability of protopplasts was higher in the culture medium containing auxin and cytokinin, especially in the combination of 2, 4-D and BAP. The effectual cell wall regeneration of protolasts was observed when theprotoplasts were cultrued on the medium supplemented with auxin alone, especially with IAA. Cell wall regernation started from 2-3 days after culture and was not detected at budding regions. When the protoplasts were cultured on the phytohormone-free medium, the viability of protoplasts dramatically decreased 4 days after culture.

  • PDF

Somatic Embryogenesis: Morphogenesis, Physiology, Biochemistry and Molecular Biology

  • Thorpe, Trevor A.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.245-258
    • /
    • 2000
  • Somatic embryogenesis has become a major tool in the study of plant embryology, as it is possible in culture to manipulate cells of many plant species to produce somatic embryos in a process that is remarkably similar to zygotic embryogenesis. Traditionally, the process has been studied by an examination of the ex vitro factors which influence embryo formation. Later structural, physiological and biochemical approaches have been applied. Host recently, molecular tools are being used. Together, these various approaches are giving valuable information on the process. This article gives an overview of somatic embryogenesis by reviewing information on the morphogenesis, physiology, biochemistry and molecular biology of the process. Topics covered include a brief description of the factors involved in the production of embryogenic cells. Carrot cell suspension is most commonly used, and the development of a high frequency and synchronous system is outlined. At the physiological and biochemical lev-els various topics, including the reactivation of the cell cycle, changes in endogenous growth regulators, amino acid, polyamine, DNA, RNA and protein metabolism, and embryogenic factors in conditioned medium are all discussed. Lastly, recent information on genes and molecular markers of the embryogenic process are outlined. Somatic embryogenesis, the best example of totipotency in plant cells, is not only an important tool in studies in basic biology, but is potentially of equal significance in the micropropagation of economically important plants.

  • PDF

In Vitro Flowering System (In Vitro 시스템에 의한 화호형성)

  • 류장렬;이행순;이광웅
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.213-237
    • /
    • 1987
  • In vitro flowering system may minimize the confounded influence of non-floral meristem parts of plants in studying the relationship of a given treatment and flowering responses. We have induced flower buds from plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng, which circumvented the normal 2-year juvenile period before flowering. The result suggests that the adulthood of ginseng root explants in the experiment previously conducted by Chang and Hsing (1980; Nature 284: 341-342) is not prerequired to flowering of plantlets regenerated through somatic embryogenesis. We have also induced flower buds from elongated axillary brandches from cotyledonary nodes by culturing ginseng zygotic embryos, seedlings, and excised cotyledonary nodes. It was found that 6-benzyladenine (BA) supplemented to the medium was essential for flowering, whereas abscisic acid (ABA) was inhibitory. Gibberellic acid(GA3) was also required for flowering when ABA was present with BA in the medium. The results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respective-ly, in the induction of flowering of ginseng. Tran Thanh Van (1980; Int. Rev. Cytol., Suppl. IIA: 175-194) has developed the "thin cell layer system" in which the induction of shoots, roots, or flower buds from epidermal layer explants were controlled by culture conditions and exogenous growth regulators in the medium, Utilizing the thin cell layer system, Meeks-Wagner et al. (1989; The Plant Cell 1: 25-35) have cloned genes specifically expressed during floral evocation. However, the system is too tedious for obtaining a sufficient amount of plant materials for biochmical and molecular biological studies of flowering. We have developed a garlic callus culture system and one obvious advantaging over the thin cell layer system is that an abundant cells committed to develope into flower buds proliferate. When the above cells were compared by two-dimensional gel electrophoresis with those which have just lost the competence for developing into flower buds, a few putative proteins specific to floral evocation were detected. The garlic callus culture system can be further explored for elucidation of the molecular biological mechanism of floral evocation and morphogenesis.hogenesis.

  • PDF

Embryogenic cell suspension culture and plant regeneration in zoysiagrass (Zoysia japonica Steud) (한국들잔디 배아세포의 부유배양과 식물체 재생)

  • Fang, Wenjuan;Han, Liebao;Qi, Chunhui;Li, Deying;Park, Tae-Yun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.345-352
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica Steud) is a warm season turfgrass species widely used for sports field and golf courses. Many cultivars are propagated through vegetative methods. This study was conducted to develop an optimum culture medium and culture conditions for embryogenic callus induction and plant regeneration, and to establish a cell suspension culture system for use in zoysiagrass breeding and propagation. The results indicated that adding $Cu^{++}$ at 2.5 mg $L^{-1}$ to the induction medium was optimum for callus induction. Increasing the numbers of sub-culture cycles improved the quality of calli. The optimum dosage for cell suspension culture ranged from 2.5 to 10 mL. The embryogenic callus suspension used in this study had a plant regeneration rate of 58%.