• Title/Summary/Keyword: plant breeding methods

Search Result 150, Processing Time 0.024 seconds

POSSIBILITY AND POSSIBLE METHODS OF IMPROVING THE NUTRITIVE VALUE OF CEREAL STRAW WITHOUT PRETREATMENT (A REVIEW)

  • Xing, Tingxian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.115-134
    • /
    • 1988
  • In view of the wide range that occurs in the nutritive value of cereal straw, the factors that may contribute are discussed under the heading of : (a) genetic factors; (b) environment factors affecting the pattern of plant growth; and (c) management factors associated with grain harvest and threshing and straw storage. The possible ways of improving the nutritive value of cereal straw without pretreatment may be achieved by selecting and breeding better cereal straw, by controlling environmental factors, by controlling management practices and by appropriate supplementation strategies to alleviate deficiencies of essential nutrients. Thus improvement in the nutritive value of cereal straw would be attained without pretreatment.

Selection Index and Genetic Advance on Quantitative Characters of Sesame (참깨의 양적형질에 대한 선발지수 및 유전진전)

  • ;Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.304-310
    • /
    • 1986
  • The studies were intended to clarify the effects of selection in sesame breeding. The 82 cultivars of sesame were used as the materials, and 14 quantitative characters were measured on individual plant basis. Selection indexes and genetic advances were calculated by Robinson's methods. In genetic advance values, combinations of days to flowering + number of capsule per plant, days to flowering + length of stem with capsule + number of capsule per plant and days to flowering + number of nodes with capsule were higher than those of other combinations. The highest genetic advance was the combination of all characters, but unreasonable problems such as the expence, time and labor involved in calculating the selection index are remained. For these reasons, it was realized that the selection index for selection should calculated on the basis of the data of 2-3 useful characters, i.e., days to flowering, length of stem with capsule and number of capsule per plant.

  • PDF

Comparison of Lines from Anther and Maternally-derived Dihaploids in Flue-cured Tobacco(Nicotiana tabacum L.) (황색종 연초의 약배양 및 종간교배에 의한 반수체 배가계통의 특성비교)

  • Jeong, Yun-Hwa;Lee, S. C.;Kim, D. U.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 1992
  • The present study was conducted to compare the relative efficiency of two different haploid breeding methods in tobacco varietal development. A single F t hybrid plant from cross of two flue-cured cultivars of Nicotiana tabacum L., Bright Yellow4(BY4) and NC 95, was used to develop the 30 dihaploid lines by anther culture(F1-ADH) and maternally-derived doubled haploid utilizing Nicotiana africana(F1-MDH), respectively. As compared with mid-parent, ADH lines showed increasing in number of leaves, delaying in days to flower and narrowing in leaf width. However, no significant differences in the other characters investigated were recognized. MDH lines also showed narrow leaf width, while no significant differences in the other characters were observed. The variations of the characters investigated were generally greater in ADH than MDH lines. MDH lines had higher plant height and shorter days to flower than ADH lines, while other characters did not show remarkable differences. The degree of heritability for each of the characters observed between ADH and MDH was almost the same. The characters showing high heritability value were plant height, leaf number, days to flower, and yield, while those showing relatively low value were leaf length, leaf width, and total alkaloid content. Predicted gains from selection for increased yield were calculated for both populations(F1-ADH, F1-MDH) and correlated responses associated with selection for yield were estimated. Plant height, leaf width, days to flower, percent reducing sugar and disease resistance would be expected to improve with selection for yield much faster in the MDH population than in the ADH.

  • PDF

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

A study on select of common Kestrel(Falco tinnunculus) hunting areas in breeding session (번식기 황조롱이(Falco tinnunculus)의 사냥 장소 선택에 관한 연구)

  • Won, Il Jae;Park, Min Cheol;Park, Hyun Doo;Cho, Sam Rae
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.350-356
    • /
    • 2016
  • The biggest factor in the success of breeding animals is selection of foods, which is determined by quality and quantity of habitats(Newton, 2003), in the case of This high biomass wetlands as an indicator of ecosystem function about Common Kestrel's choice of hunting area is expected to be an important clue of quality and quantity of habitats. For this study, it is divided into four types(Glasslands, Paddy fields, Dry fields, Rparian land) about Common Kestrel's hunting area in Yugu-eup, Gongju-si, Chungcheongnam-do, Recorded the behavior of Common Kestrel for three years during the breeding season from March to June(2014~2016). Result of investigation, hunting area showed a high hunting behavior in riversides and flight-hunting was frequently investigated from may to June. In addition flight-hunting's main food acquisition is mammal(the vole), while perching behavior's main food acquisition is insect according to the fact flight-hunting were mainly done in riversides, perching behavior were highly investigated than flight-hunting at glasslands and paddy fields and dry field. Hunting spot's coverage rate of plants covering the ground showed differences depending on hunting areas, but height of plants were not significant. Height of the plant according to hunting methods of flight-hunting to catch mammal(vole) was analyzed to prefer lower height than perching behavior Based on these results riversides are considered as a very important environmental factors for Common Kestrel's prey selection in breeding session.

Modified CTAB DNA Methods for efficient DNA extraction from Rice (Oryza sativa L.) (벼 분자육종을 위한 CTAB DNA 추출 시스템 개량)

  • Lee, Jong-Hee;Kwak, Do-Yeon;Yeo, Un-Sang;Kim, Choon-Song;Jeon, Myeong-Gi;Kang, Jong-Rae;Park, Dong-Soo;Shin, Mun-Sik;Oh, Byeong-Geun;Hwang, Hung-goo
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.286-290
    • /
    • 2008
  • Many important traits have been tagged allowing plant breeders to apply marker assisted selection (MAS) in rice. PCR itself is simple to set up, and requires little hands-on time. However, a crucial limiting step of MAS programs is the reliable and efficient extraction of DNA which can be performed on thousands of individuals. In this study, We describe a modification of the DNA extraction method, in which cetyltrimethylammonium bromide (CTAB) is used to extract DNA from leaf tissues for suitable MAS in rice. We followed the standard 2% CTAB extraction method in all the procedure. In addition we used the 1.2 ml 8-strip tube instead of 1.5 ml E-tubes to fit the 8-multichannel pipette and employ the 96 well plate to use the swing bucket centrifuge. Our modified CTAB DNA extraction method offers several advantages with respect to traditional and simple methods. 1) adult leaf samples collected in paddy field are applicable. 2) 96 leaf samples can be homogenized only one-time by using tungsten carbonate bead and 96well block. 3) semiautomatic loading method using 8-multichannel pipette from DNA extraction to electrophoresis of PCR products. 4) our system can extract about 400 leaf samples per day by only one technicion. Therefore, this method could be useful for marker assisted breeding in rice.

Effective Techniques for Seedling Production of Amsonia ellipotica (Thumb.) Roem. & Schult. (정향풀의 효과적인 묘 생산을 위한 육묘법)

  • Lee, Sang In;Yeon, Soo Ho;Cho, Ju-Sung;Kim, Sang Young;Cho, Won Woo;Jeong, Mi Jin;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.470-477
    • /
    • 2021
  • Amsonia ellipotica (Thumb.) Roem. & Schult. has less than 10 native places nationwide and is evaluated as an endangered species (EN) on the Korean Red List, so systematic breeding and cultivation methods are required. This study was carried out to establish an effective method for seedling production in A. elliopotica that can be developed as a genetic resource conservation and new ornamental material. This experiment was performed by varying the seedling production container (72, 105 and 128 cell trays), number of seeds sown in a cell (1, 2, and 4 per cell), soil type [horticultural soil and neutralized peat-moss: perlite mixed in 3:1, 4:1 (v:v)], additional fertilizer concentrations (0, 250, 500 and 1000 mg/L) and shading degrees (0, 55 and 75%). As a result of the study, growth increased with the increased in measuring capacity per cell of sowing container. According to number of seeding growth, sowing one seed per cell was the best. Seedling growth increased as the treatment concentrations increased, higher growth was in 1000 mg/L. On the other hand, during the shading treatment, growth significantly decreased regardless of shading degrees.

Growth Characteristics of Turmeric (Curcuma longa L.) Germplasms and Storage Conditions of Seed Rhizomes (강황 수집자원의 생육특성 및 종근 저장 방법)

  • Lee, Jeong Hoon;Oh, Myeong Won;Jang, Hyun Do;Lee, Yun Ji;Jeong, Jin Tae;Park, Chun Geon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • Background: Curcuma longa L., a perennial crop originating from tropical and subtropical region, including India, is noted for its important medicinal properties. However, C. longa plants are unable to endure the winter season in Korea, and its rhizomes were invariably succumb to fungal infection when stored in polyvinyl bags. In this study, we accordingly sought to develop a C. longa variety capable of producing high rhizome yields and to identify stable conditions under which rhizomes can be stored in Korea. Methods and Results: We evaluated the agronomic characteristics of nine C. longa germplasms and examined the effects of storing rhizomes at different temperatures (4℃ to 24℃) in paper bags or plastic baskets. We found that the finger rhizomes was higher in CUR02, CUR03, and CUR06 germplasms than those of other groups. Furthermore, in terms of yield per 1 ㎡, the weights of the finger rhizomes and tuberous roots were significantly higher in CUR09 (3.4 ㎏/㎡) and CUR04 (678.7 g/㎡) than those of other groups. Therefore, we consider that these C. longa germplasms might be useful as breeding material. Although the fresh weights of the rhizomes were slightly reduced when stored in paper bags and a plastic baskets at 10℃ to 15℃, there was no evidence of fungal decomposition or sprouting, which is observed when using a conventional storage method. Conclusions: The results of this study indicate that the selected C. longa germplasms can provide a useful source of breeding material for the development of high yielding varieties and that a temperature ranging from 10℃ to 15℃ and the use of paper bags or plastic baskets provide stable post-harvest storage conditions for C. longa rhizomes.

Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng)

  • Jo, Ick Hyun;Kim, Young Chang;Kim, Dong Hwi;Kim, Kee Hong;Hyun, Tae Kyung;Ryu, Hojin;Bang, Kyong Hwan
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.444-449
    • /
    • 2017
  • The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.